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Abstract

Stringent financial regulations and advancing trading technologies have reshaped over-the-counter

intermediation, discouraging dealers from providing immediacy to customers using their own inventories

(principal trades) in favor of a larger matchmaking activity (agency trades). This paper studies how cus-

tomers optimally choose between these two trading mechanisms and the implications of this choice for

market liquidity. I develop a quantitative search model where heterogeneous customers choose between

immediate but expensive and delayed but less costly trades, i.e., principal and agency trades, respectively.

Each customer solves this speed-cost trade-off, jointly determining her optimal mechanism, transaction

costs, and trading volume. When market conditions change, customers migrate across mechanisms in

pursuit of higher trading surpluses. I show that this migration is not random, thus liquidity measures

change not only because of changes in market conditions but also because of a composition effect. To

quantify such an effect, I structurally estimate my model and build counterfactual measures that control

for migration. I replicate the major innovations seen in these markets and find that composition effects

explain more than a third of the increase in principal transaction costs.
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1 Introduction

Over-the-counter (OTC) markets are characterized by the lack of a centralized exchange in which customers

can trade securities. Instead, customers need to search for trading counterparties. Dealers mitigate these

search frictions in two ways. First, by trading with customers using their own inventories, i.e., by performing

principal trades. Second, by matching customers with offsetting liquidity needs, i.e., by performing agency

trades.1 These two trading mechanisms, principal and agency, represent for customers a speed-cost trade-off.

Principal trades are immediate but, given the implied inventory costs, are also costly. In contrast, agency

trades are cheaper but imply an execution delay, caused by the time it takes to find a suitable counterparty.

Post-2008 financial regulations and recent technological changes have had a major impact on the

relative cost of supplying these two types of trades. The implementation of the Dodd-Frank Act and the

Basel III framework increased dealers’ inventory costs, reducing their willingness to trade on a principal

basis (Duffie, 2012; Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018). Quoting Goldman Sachs:

“Banks are committing less capital to trading desks with fixed income assets down 22% since 2010, and have

exited some businesses altogether; for example, J.P. Morgan and Morgan Stanley no longer make markets in

physical commodities while Deutsche Bank has exited single-name CDS”.2 In turn, the rising popularity of

electronic trading venues shifted intermediation further away from dealers’ inventories, allowing dealers to

match customers more easily and letting customers by-pass dealers’ intermediation thoroughly using all-to-all

platforms (O’Hara and Zhou, 2021; Hendershott, Livdan, and Schürhoff, 2021).

Although the literature has extensively studied dealers’ optimal intermediation strategy in the face

of changing market conditions, the customers’ optimal response to such a strategy and its implications

for liquidity measurement have remained relatively unexplored. Notably, the speed-cost trade-off previously

described suggests that customers may optimally migrate across trading mechanisms when market conditions

change. Moreover, the decentralized nature of OTC markets – in which each customer bargains her own

terms of trade – suggests that this migration might affect liquidity measures, by altering the samples over

which these measures are computed.

In this paper, I develop and estimate a quantitative search model where I explicitly study the trading

mechanism choice of each customer. I use this model to address how this trading mechanism choice affects

liquidity measures when market conditions change. The model features risk-averse customers choosing

between immediate but expensive and delayed but less costly trades, i.e., principal and agency trades,

respectively. I find that customers with larger trading needs choose to buy and sell on principal. Intuitively,

when trading is relatively urgent, the immediacy benefit outweighs the principal premium paid. Furthermore,

customers with larger trading needs pay higher transaction costs, given that dealers extract higher fees from

1Agency trades are also known in the literature as riskless principal or matchmaking trades. The key characteristic of this
mechanism is that the dealer avoids involving her own inventories by pre-arranging both legs before executing them.

2Goldman Sachs Global Investment Research, August 2, 2015 Report.
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them. When market conditions change a fraction of customers optimally migrate across trading mechanisms.

Therefore, principal and agency transaction cost measures change not only because the market conditions

did, but also because of a composition effect. To quantify this composition effect, I develop counterfactual

measures of transaction costs that control for migration. I structurally estimate the model using corporate

bond transaction data and revisit the two major innovations this market experienced in the last decade. I

find that the standard practice of comparing average transaction costs before and after a change in market

conditions overestimates the impact of these changes. Specifically, composition effects account for 32% of the

rise in principal costs after an inventory costs increase and for around 90% of the change after an increase

in the agency execution speed. In turn, agency costs are barely affected by composition effects.

My model explicitly accounts for the optimal decisions of customers facing alternative trading mech-

anisms in OTC markets. Particularly, I build on the framework in Lagos and Rocheteau (2009) (hereafter

LR09). The model features search frictions, heterogeneous risk-averse customers trading a perfectly divisible

asset, and bilateral bargaining over the terms of trade. My theoretical contribution relative to LR09 is that

I allow customers to choose between two trading mechanisms, which resemble principal and agency trades

in practice. Principal trading is immediate but costly. This responds to dealers partially translating their

implied inventory costs to customers. Agency trading is delayed but cheaper: finding a suitable counterparty

takes time, but dealers avoid incurring inventory costs. These features enable me to study the aforementioned

speed-cost trade-off.

I find that, in equilibrium, customers sort themselves across mechanisms depending on their liquidity

needs. Customers with a larger distance between current and optimal asset positions choose to trade on

principal. Conversely, customers with positions closer to their optimal ones choose to wait for an agency

execution. This finding is explained by customers obtaining a marginally decreasing utility from holding

assets. The bigger the distance between customers’ current and optimal positions, the higher their marginal

trading surplus and the higher their willingness to pay for an immediate execution.

This optimal sorting has a direct impact on liquidity measures. In the model, optimal mechanisms

and transaction costs are jointly determined. Specifically, transaction costs are bargained, and thus they

incorporate a customer’s specific trading surplus. The more a customer needs to trade, the larger the

marginal trading surplus she attains and the higher the cost she has to pay for each unit traded. As can be

seen, when trading needs are large, not only are customers more likely to opt for the principal trade, but

they also pay higher transaction costs. The implication is that principal traders pay on average higher costs

not only because of the inventory costs implied by the mechanism but also because of selection: customers

trading on principal have on average larger trading needs than those trading on agency.

I use this framework to analyze the optimal reaction of customers when market conditions change

and its implications for liquidity measurement. Specifically, I consider changes in the two key parameters
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that affect the speed-cost trade-off faced by customers: the inventory costs implied by principal trades and

the execution speed of agency trades. These changes resemble recent market innovations, where stricter

regulations increased inventory costs and the rising popularity of electronic trading venues eased agency

trading. Not surprisingly, in both cases, customers endogenously migrate away from principal trading.

Furthermore, such migration is not random: among principal traders, only those with smaller trading needs

migrate towards agency. Intuitively, smaller trading needs place customers closer to being indifferent between

principal and agency trading, given that the marginal surplus from fast trading is closer to the premium cost

paid for it.

Such a heterogeneous response implies an empirical issue when trying to estimate the impact of a

market innovation on liquidity. In this regard, the empirical literature has widely exploited the relation

between trading mechanisms and execution delays to overcome a recurrent inconvenience: execution delays

are not observed. Particularly, when measuring transaction costs, researchers would split trades beforehand

according to the trading mechanism used. Principal costs would account for the price of immediacy, whereas

agency costs would measure the price of delayed executions.3 Although splitting trades in such a way purges

transaction cost measures from execution delay changes, it overlooks the fact that the obtained samples

are endogenous: they are the result of a choice. When market conditions change, customers endogenously

migrate, altering the composition of the samples over which principal and agency transaction costs are

measured. Thus transaction cost measures are affected not only by the initial market condition change but

also by the additional sample composition change. For example, an increase in inventory costs would increase

the cost of immediate trading quoted by dealers, and thus reduce the sample of principal traders to those

with higher trading needs. If those customers with higher trading needs pay relatively higher transaction

costs, the effect of increasing inventory costs on principal transaction costs would be overestimated.4

Equipped with the steady-state equilibrium of my model, I tackle this empirical issue. Firstly, I

decompose the equilibrium distribution of customers into those that, after a market innovation, continue

using the same mechanism or not, i.e., the non-migrant and migrant customers, respectively. Secondly,

for each mechanism I compute measures of transaction cost changes, using both the entire distribution of

customers before and after the innovation, as well as the subset of non-migrant customers. The comparison

of these measures returns the sign and size of the composition effect.

To ensure that my numerical results are grounded in the data, I estimate the key parameters of the

model using corporate bond data. Two key characteristics of this market make it the perfect fit for my

3There are two main strategies to identify principal and agency trades. The first one infers agency trades as those offsetting
transactions performed by the same dealer within a small time window (usually between one and fifteen minutes), labeling
as principal all remaining trades (Schultz, 2017; Goldstein and Hotchkiss, 2020; O’Hara and Zhou, 2021; Choi, Huh, and
Seunghun Shin, 2024). A second method is to isolate episodes where arguably only principal trades are performed, such as
downgrades (Bao, O’Hara, and Zhou, 2018), extreme market volatility events (Anderson and Stulz, 2017), or index exclusions
(Dick-Nielsen and Rossi, 2019).

4The role of composition effects in aggregate measure changes has also been addressed in other research areas, e.g. firms’
productivity (Young, 2014), wage inequality (Lemieux, 2006), etc.
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model. First, it presents a hybrid principal/agency structure. When in need of trading bonds, customers

contact dealers requesting quotes for a specific issue, size, and trade direction. Dealers provide liquidity by

quoting prices and/or by searching for counterparties. When quotes are firm, i.e. executable, customers

can trade immediately against dealers’ inventories. Alternatively, when dealers search for counterparties,

the execution is delayed. Ultimately, customers choose to execute the best firm quote received, if any, or

to wait for a matching counterparty in pursuit of a better price. Second, terms of trade in this market are

largely bargained. This is because market participants are typically institutional investors interacting with

dealers in a bilateral and non-anonymous way, such as voice trading or electronic disclosed request-for-quote

(RFQ).5

I structurally estimate the model using transaction data from the academic version of the Trade

Reporting and Compliance Engine (TRACE) database from January 2016 to December 2019. Importantly,

this data contains dealers’ identifiers, thus it allows me to distinguish between principal and agency trades.

I target a set of relevant empirical moments and use the generalized method of moments to jointly estimate

the deep parameters of the model.

Finally, the estimated model is used to revisit the empirical evidence related to the transaction costs

evolution after two major innovations in the corporate bond market. I perform numerical exercises that

replicate both the introduction of post-2008 stricter financial regulations and the rise of electronic trading

venues. In both cases, when the economic environment changes, migration across mechanisms takes place.

Using the aforementioned strategy, I show that the composition effect matters: it explains an economically

significant fraction of the change in transaction costs.

Regarding the first exercise proposed, the aftermath of the 2008 financial crisis saw the introduction of

new regulations aimed at increasing the financial market’s resilience. The adoption of the Dodd-Frank Act in

the United States and the Basel III framework internationally – regulations meant to reduce banks’ exposure

to risky assets – negatively affected their dealership activity. Specifically, these regulations increased banks’

cost of holding assets in their balance sheets, thus reducing their willingness to provide liquidity on a principal

basis (Duffie, 2012). Several papers have addressed the impact of these new regulations on market transaction

costs. Overall, the consensus is that principal costs have increased since the new regulations took place, with

intermediation shifting away from principal trading towards larger agency activity (Anderson and Stulz,

2017; Schultz, 2017; Bao, O’Hara, and Zhou, 2018; Bessembinder, Jacobsen, Maxwell, and Venkataraman,

2018; Dick-Nielsen and Rossi, 2019; Choi, Huh, and Seunghun Shin, 2024). I analyze such an increase in

inventory costs through the lens of my model. The exercise suggests that previous estimates overstate the

increase in principal costs. Particularly, I find that the composition effect accounts for a third of the increase

5See International Organization of Securities Commision (2022) for a thorough description of corporate bond trading, and
Securities Industry and Financial Markets Association (2019) for specific details about electronic trading. As of 2022, 60% (69%)
of investment-grade (high-yield) volume is voice traded, i.e. phone calls, instant messages, etc. Within electronic trading, 58%
is performed through RFQ, a number that increases to 68% if we include portfolio trading (McPartland, 2023).
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in principal costs while it does not play an economically significant role in the change of agency costs.

The second numerical exercise is motivated by the emergence of electronic trading venues. Al-

though electronic platforms allow for alternative protocols (e.g. auctions, central limit order books) and

even customer-to-customer trades (all-to-all platforms), corporate bond electronic trading still relies largely

on dealers’ intermediation, RFQ being the most popular trading protocol used (Hendershott, Livdan, and

Schürhoff, 2021; McPartland, 2023). Notwithstanding, a major impact electrification had on bond trad-

ing was to expand market participants’ networks, therefore easing agency intermediation. The empirical

evidence tells us that the agency share is higher for bonds that are traded electronically and that dealers

use electronic platforms to find counterparties for customers that contacted them through traditional voice

messages (Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018; O’Hara and Zhou, 2021). From the

customers’ perspective, the rising popularity of electronic trading venues implies that dealers can match them

with a counterparty faster. To replicate this market innovation, I reduce the expected agency execution delay

of the model. I find that transaction costs increase in both mechanisms. However, while the composition

effect implies a negligible underestimation of the change in agency costs, it explains most of the increase in

principal transaction costs.

Overall, the results in this paper suggest that accounting for customers’ optimal response better

informs policymakers about the impact that innovations have on OTC markets liquidity. Firstly, this is

because customers optimally migrate across mechanisms, mitigating the effect of worsening conditions and

fostering the effect of improving ones. Secondly, considering the customers’ response allows us to better

measure the impact of the new market conditions. In particular, I show that the rise in transaction costs

due to stricter financial regulations is partially explained by a composition effect.

1.1 Related Literature

This paper develops a theoretical model of trading mechanism choice in OTC markets that allows me to

revisit quantitatively recent evidence on transaction cost changes. It contributes to three strands of the

literature.

Firstly, this paper contributes to the search literature in OTC markets, pioneered by Duffie, Gârleanu,

and Pedersen (2005) and Lagos and Rocheteau (2009), and summarized in Weill (2020). In this literature,

when customers and dealers meet, execution is immediate. I relax this assumption by explicitly modeling

two trading mechanisms, which resemble principal and agency trades in practice. This feature allows me

to study theoretically the customers’ trade-off between expensive but immediate and cheaper but slower

execution. I show that the optimal mechanism choice can be characterized by preference-specific asset

holdings thresholds, and analyze how such thresholds change according to the key parameters of the model.

In their independent, contemporaneous work, Dyskant, Silva, and Sultanum (2023) also include alternative
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trading mechanisms in a search model. In their framework, customers are restricted to holding either zero

or one unit of the asset. In contrast, I allow for unrestricted asset holdings and show that the endogenous

trade size of each customer determines her trading mechanism choice. I further exploit the relation between

trade size and transaction costs to estimate my model and perform quantitative exercises where I assess the

role that migration plays when measuring liquidity.

This paper also contributes to the theoretical literature that explicitly accounts for principal and

agency trading in OTC markets (Cimon and Garriott, 2019; Plante, 2021; An, 2022; An and Zheng, 2023;

Saar, Sun, Yang, and Zhu, 2023). This literature addresses how dealers manage their inventories by setting

the optimal principal trade cost: if the principal cost increases customers migrate towards agency trading,

reducing the inventory burden.6 In my model, both the trading mechanism choice and the terms of trade in

each mechanism are the results of bilateral bargaining between dealers and customers. The consequences are

twofold. First, it provides a non-degenerate distribution of transaction costs within each trading mechanism,

which I exploit to estimate the model. This is because the terms of trade reflect both the incurred cost of

the bargaining dealer and the trading surplus of the bargaining customer. Second, it allows me to study how

composition effects affect liquidity measures in a quantitative way. In line with the existing literature, when

the principal premium increases the sample of customers trading on principal reduces. In contrast with the

existing literature, the reduction of the sample does affect the average principal transaction costs, given that

each customer bargains her own transaction cost.

Finally, this paper complements the empirical literature that addresses transaction cost changes and

trading mechanism shifts in the corporate bond market. It has been documented that the regulations set after

the 2008 financial crisis changed the liquidity profile of this market. Specifically, researchers have shown that

principal trading is less abundant and more costly (Anderson and Stulz, 2017; Schultz, 2017; Bao, O’Hara, and

Zhou, 2018; Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018; Dick-Nielsen and Rossi, 2019; Choi,

Huh, and Seunghun Shin, 2024; Rapp and Waibel, 2023). Additionally, the empirical evidence indicates that

the rising popularity of electronic trading venues had attracted volume towards agency trading, reducing the

cost of such trades (Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018; O’Hara and Zhou, 2021).

Finally, during episodes of big turmoil, e.g., COVID-19, researchers have documented a rise in the cost of

principal trading with an associated shift away from it (Kargar, Lester, Lindsay, Liu, Weill, and Zúñiga,

2021). A common feature across these papers is the lack of customer data, which prevents them from

controlling the documented customers’ endogenous migration when computing transaction cost changes.7 I

complement these papers by analyzing the sign and size of the consequent composition effect. To achieve

6A less related literature studies the customers’ optimal choice of trading in a centralized or a decentralized market (Miao,
2006; Shen, 2015)

7Goldstein and Hotchkiss (2020) address the cross-section of bond characteristics as another source of endogeneity. The
authors find that bonds with an expected larger holding period are more likely to be traded on an agency basis, reconciling the
fact that low turnover assets are often traded at smaller transaction costs.
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this goal, I exploit the model to construct counterfactual distributions in which transaction cost changes

can be measured using a steady sample of customers. I show that the estimates of transaction cost changes

provided by this literature include an economically significant composition effect, and thus can hide the true

speed-cost trade-off customers face.

2 The Model

In this section I explain the model. I start by describing the environment and the problems that both

customers and dealers face. Later I show how terms or trade are set, highlighting the link between transaction

costs and trading mechanism choice. Finally, I define the steady-state equilibrium.

2.1 Environment

I build on LR09 continuous time model of an OTC secondary market with search frictions. There is a

single asset in fixed supply A ∈ R+, and two types of infinitely lived agents: customers and dealers, both in

unit measure and discounting time at rate r > 0. Customers hold an asset in quantity a ∈ R+ and derive

utility from two different consumption goods, fruit and numéraire. Fruit is perishable, non-tradable, and

produced by the asset in a one-to-one ratio. In turn, the numéraire good is produced by all agents. The

instantaneous utility function of a customer is ui(a) + d, where a and d represent the consumption of fruit

and the net consumption of the numéraire good, respectively, and i ∈ {1, ..., I} indexes the preference type.

Specifically, the instantaneous utility provided by fruit is assumed iso-elastic, ui(a) = ϵi×a1−σ/(1−σ), with

multiplicative preference shifters ϵi. Each customer is subject to an independent preference shock process,

which follows a Poisson distribution with arrival rate δ. Once hit by the preference shock, a new type i is

assigned with probability πi, where
∑I

i=1 πi = 1. This change in preferences creates a motive for trade in the

model, and can be interpreted as changing hedging needs (Duffie, Gârleanu, and Pedersen, 2007; Vayanos

and Weill, 2008), changing beliefs about the asset’s future payoff (Hugonnier, 2012), etc.

Customers can trade assets only when they contact a dealer, an event that is governed by a Poisson

process with an arrival rate of α. Once a customer meets a dealer, she chooses among two kinds of trading

mechanisms: principal or agency, denoted by superscripts P and A, respectively. If she opts for the principal

trade, she immediately exchanges each unit of her excess position at the inter-dealer price p and pays a

transaction cost of ϕP . Conversely, if she opts for an agency trade, she waits until the dealer finds her a

counterparty, and meanwhile enjoys the utility provided by her current asset holdings. It is assumed that

she will be matched at a random time according to a Poisson process with β arrival rate. When matched,

this customer rebalances her position at p and pays the dealer a transaction cost ϕA. I further assume that

a customer cannot contact any other dealer while she is waiting for her trade to be executed. Thus, at
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every moment, customers will be either waiting to contact a dealer or waiting for their agency trade to be

executed. These two states are denoted by ω1 and ω2, respectively.

The model features bilateral bargaining. This is a salient feature of many OTC markets, and in

particular of the corporate bond market, where institutional investors such as hedge funds or insurance

companies interact with dealers in a non-anonymous way, e.g. voice trading or disclosed electronic RFQ

(McPartland, 2023). Specifically, transaction costs and quantities are determined through a Nash bargaining

protocol that takes place at the moment of contact with the dealer. This timing assumption implies that, for

agency trades, the negotiation is based on the expected trade surplus a customer subject to preferences shocks

might achieve. More details about these terms of trade are presented in subsection 2.2. After transactions

are completed, the dealer and the customer part ways.

At any time, customers find themselves with certain asset holdings at, preference type it, and within

a specific waiting state ωt. Thus, customers can be fully characterized by the triplet {at, it, ωt} ∈ O, where

O = R+ × {1, ..., I} × {ω1, ω2}. This heterogeneity is depicted with a probability space (O, Σ, Ht), where

Σ is the σ-field generated by the sets (A, I, W), with A ⊆ R+, I ⊆ {1, ..., I}, W ⊆ {ω1, ω2}, and Ht is

a probability measure on Σ that represents the distribution of customers across the state space at time t.

Figure 1 outlines a customer’s potential paths from the moment she contacts a dealer until she executes her

trade.

Figure 1: Customer Path.

{a, i} α

δ

[{aPi , i}, ϕPi ]

[{a, i}, ϕAi ]

{a, j}

β

δ

{aAi , i}

{a, j} β {aAj , j}

Waiting for Dealer Waiting for Dealer

P

A

Principal

(fast,expensive)

Agency

(slow, cheap)

Choice
Shock

Note: This figure shows a customer’s path through the state space. Shocks are depicted by black arrows,

and include the contact with dealers (α), the change of preference (δ), and the execution of the agency trade

(β). The customer’s choice is depicted in orange arrows and includes the optimal trading mechanism and

the corresponding new asset holdings.

Since I am going to focus on the steady-state equilibrium, to simplify the notation I disregard the

time dependence when it is not strictly necessary. The maximum expected discounted utility attainable by
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a customer waiting for a dealer with preference type i at time t and asset holding a, Vi(t)(a), satisfies

Vi(t)(a) = Ei(t)

[ ∫ Tα

t

e−r(s−t)ui(s)(a)ds+ e−r(Tα−t) max
{
V P
i(Tα)(a), V

A
i(Tα)(a)

}]
, (1)

where

V P
i(Tα)(a) = Vi(Tα)(a

P
i(Tα))− p(aPi(Tα) − a)− ϕPi(Tα)(a),

V A
i(Tα)(a) =

∫ Tβ

Tα

e−r(s−Tα)ui(s)(a)ds+ e−r(Tβ−Tα)
[
Vi(Tβ)(a

A
i(Tβ)

)− p(aAi(Tβ)
− a)− ϕAi(Tα)(a)

]
.

Tα and Tβ are the next time a customer contacts a dealer and the execution time of the agency trade,

respectively. The expectation operator Ei(t) is over the arrival times of contact with dealers, the execution

of the agency trade, and the expected stream of preference types i(s), conditional on the customer being of

a certain preference type at t. Transaction costs and prices are expressed in units of the numéraire good.

In turn, dealers trade on behalf of their customers in a frictionless inter-dealer market. If they are

asked to execute a principal trade, they need to incur inventory costs θ ∈ [0, r
r+β ) per (numeraire) dollar

traded. In line with existing literature (e.g., An and Zheng, 2023; Saar, Sun, Yang, and Zhu, 2023), I assume

that dealers’ marginal inventory costs are constant. In this regard, Duffie et al. (2023) shows that liquidity

measures are not affected by the level of dealers’ inventory capacity utilization unless the latter is at an

abnormally high level. Thus, the assumption is empirically supported as such a scenario of extremely high

capacity utilization is not considered. Moreover, this reduced form formulation favors parsimony, as it allows

a link to be drawn between customers’ demand for immediacy and dealers’ inventory costs without including

inventories as an additional state variable. This is because all trades are sourced through the frictionless

inter-dealer market, therefore dealers hold zero net positions.8 On the other hand, if the client asks the dealer

to perform an agency trade, they wait until a counterparty is found, and the transaction cost is charged at

execution. A dealer’s expected utility is given by the present value of the transaction costs she collects net

of the costs she incurs, thus her maximum expected discounted utility satisfies

W (t) = E
[
e−r[Tα−t]

(∫
R+×{1,...,I}

Φi(Tα)(a)dH
ω1

Tα
+W (Tα)

)]
, (2)

where Φi(a) = 1[P trade]

(
ϕPi (a)− θp|aPi − a|

)
+ 1[A trade]

(
e−r(Tβ−Tα)ϕAi (a)

)
and the integration over

the normalized probability measure Hω1

Tα
, which represents the distribution of customers waiting to contact

a dealer at time Tα, is because of random matching.

Compared to previous papers in which dealers actively manage their optimal principal and agency

order flow by setting a unique principal premium (e.g., Cimon and Garriott, 2019; An, 2022; Saar, Sun, Yang,

8See Cohen, Kargar, Lester, and Weill (2022) for a search model with explicit inventory in OTC markets.

10



and Zhu, 2023), the dealers in my model let the order flow to be the result of trade-specific bargaining. As

described in section 2.2, the bargaining protocol guarantees that the trading mechanism chosen maximizes

the profit dealers obtain in each interaction. Therefore, the resulting principal and agency order flow is

optimal for dealers.

Finally, it is worth noting that dealers might not offer both trading mechanisms in practice. For

example, many OTC inter-dealer markets follow a core-peripheral structure, in which principal trading is

mostly performed by core dealers (e.g., Li and Schürhoff, 2019). Dealers can also strategically trade only

on principal to build inventories and compete for market share (An, 2022). If customers have access to a

limited set of dealers, these market structure features would reduce customers’ capability to migrate from

one mechanism to another. In this regard, the availability of electronic platforms where customers can shop

across dealers lessens this concern.9

2.2 Terms of Trade

In the proceeding subsections I present the policy functions of the agents of the model, i.e., the optimal

asset holdings, their corresponding transaction costs, and the trading mechanism choices. I find that, in

equilibrium, customers sort across mechanisms depending on their liquidity needs.

2.2.1 Optimal Asset Holdings and Transaction Costs

Once a customer contacts a dealer and chooses a trading mechanism, optimal asset holdings and transaction

costs are set as the outcome of a Nash bargaining problem, where the dealer’s bargaining powers is η ∈ [0, 1].10

When trading on principal, the total trading surplus equals the customer’s utility gain from an immediate

position re-balancing minus the dealer’s cost of providing such immediacy. The principal terms of trade

are:11

ϕPi (a) = η
[
Vi(a

P
i (a)− Vi(a)− p(aPi (a)− a)

]
+ (1− η)

[
θp|aPi (a)− a|

]
, (3)

aPi (a) = argmax
a′

Vi(a
′)− Vi(a)− p(a′ − a)− θp|a′ − a|. (4)

The presence of inventory costs has two important consequences for principal trades. Firstly, con-

ditional on the trade direction, inventory costs are translated into an increase (decrease) in the effective

price customers pay when buying (obtain when selling) hence the problem becomes linear in the volume

traded. Consequently, when gains from trade are positive, principal buyers and sellers choose their optimal

9For example, Kargar, Lester, Plante, and Weill (2023) reports that customers’ inquiries in MarketAxess, the leading
corporate bond electronic platform, are replied on average by six dealers.

10Duffie, Gârleanu, and Pedersen (2007) model explicitly a bargaining game where agents make alternate offers. They show
that the Nash bargaining powers equal the probabilities of making an offer in such a game.

11See Appendix B.1 for details.
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holdings, aP,b
i and aP,s

i , respectively, independently of their current positions. Secondly, some customers

might optimally not trade at all. In contrast with LR09 and the bulk of theoretical models that account for

principal and agency trades, the policy function in the model allows for a no-trade region, explained by the

existence of immediacy costs.12

In turn, agency trades imply an expected execution delay, during which the customer might suffer

preference shocks. Hence, a specific timing assumption regarding when optimal holdings and transaction

costs are set is needed. It is assumed that transaction costs are arranged when customers and dealers meet,

and that optimal holdings are decided at execution. This timing assumption responds to two observations.

First, by letting transaction costs be set at contact, customers’ expected utility loss from waiting to re-

balance positions is accounted for when bargaining. Contrastingly, if transaction costs were bargained at

execution, such a loss would be sunk, and dealers would collect the immediacy price in exchange for a delayed

trade. Second, allowing for the optimal volume to be chosen at execution aligns with order cancellation, a

common practice when trading securities (Foucault, Pagano, and Röell, 2013).13

When trading on agency, the total trading surplus equals the customer’s expected utility gain from a

delayed position re-balancing, which is performed according to the customers’ preference at execution. The

agency terms of trade are:

Et[e
−r(Tβ−t)]ϕAi(t)(a) = η

{
Ei(t)

[ ∫ Tβ

t

e−r(s−t)ui(s)(a)ds

+ e−r[Tβ−t]
[
Vi(Tβ)(a

A
i(Tβ)

)− p(aAi(Tβ)
− a)

]]
− Vi(t)(a)

}
, (5)

aAi = argmax
a′′

{Vi(a′′)− pa′′}. (6)

With these results at hand, I manipulate the Bellman equation (1) to reach a simpler and more

intuitive representation. First, I plug in the bargaining outcomes and note that the problem is equivalent to

the one faced by a customer with maximum bargaining power but smaller contact rate κ = α(1− η). I refer

to κ as the bargaining-adjusted contact rate. Second, I use analytical expressions for all the expectations

related to the shocks of the model.14

12Given that most of the databases are based on transaction data, the empirical evidence related to no trades is hard to
find. Hendershott, Li, Livdan, and Schürhoff (2020) provide evidence of no trading in the CLO market. The authors compute
a no-trading rate that goes from 7% to 30%, decreasing in the seniority tranche of the security. The CLO market features,
in which trading is done through auctions and where sellers choose when to contact dealers, prevent us from reading these
numbers through the lens of the present model.

13An alternative modeling choice is to assume that customers and dealers commit upon contact to trade a certain optimal
volume at execution. In this case, customers opting for agency trading would choose more moderate positions, hedging against
a change in preferences while waiting for execution. This assumption not only is at odds with order cancellation in practice
but also implies a modeling disadvantage. In particular, it requires tracking the committed trade amount within the “waiting
for execution” state, adding another state variable to an already large state-space.

14See the Appendix B.2 and B.3 for details.

12



Vi(a) = Ūκ
i (a) + κ̂

[
[1− δ̂κ]Υi + δ̂κ

∑
j

πjΥj

]
, (7)

where: Ūν
i (a) =

[
[1− δν ]ui(a) + δν

∑
j

πjuj(a)
] 1

r + ν

Υi = max
{
Vi(a

P
i )− p(aPi − a)− θp|aPi − a| , Ūβ

i (a) + β̂[V̄ A
i − p(āAi − a)]

}
V̄ A
i = [1− δβ ]Vi(a

A
i ) + δβ

∑
j

πjVj(a
A
j ) , āAi = [1− δβ ]aAi + δβ

∑
j

πja
A
j

κ̂ =
κ

r + κ
, β̂ =

β

r + β
, δ̂ν =

δ

r + δ + ν
, ν = {κ, β}.

The first term of equation (7), Ūκ
i (a), is the expected utility of holding assets a until the next

(bargaining-adjusted) contact with a dealer. While waiting for this contact, a customer might change her

preferences, and so this term is a convex combination of the utility under the current and the future expected

type. Hence, when the customer contacts a dealer she might be in two different situations: she might have

avoided the preference shock or she might have received it. The corresponding probabilities of these scenarios

are (1− δ̂κ) and δ̂κ, respectively.

The trading mechanism choice, Υi, represents the innovation compared to LR09. If customers choose

to trade on principal, the execution is immediate. The premium paid for such immediacy is expressed in

a higher effective price for buyers, p(1 + θ), and a lower effective price for sellers, p(1 − θ). Conversely, if

an agency trade is chosen, customers need to wait for execution. This waiting stage is reflected in Ūβ
i (a),

the utility that a customer with current preference i holding asset a expects to derive until executing her

agency trade. At the moment of execution, her preference may have changed, and so her expected value

function, V̄ A
i , is a convex combination across the preference space. As can be seen, equation (7) highlights

the speed-cost trade-off customers face when choosing a trading mechanism.

2.2.2 Trading Mechanism Choice

I start by looking for the preference-specific current asset holding thresholds that make each customer

indifferent among trading mechanisms. The indifference condition for a type i customer is given by:

[
Vi(a

P
i )− Vi(a)

]
− p(aPi − a)− θp|aPi − a| =

[
Ūβ
i (a) + β̂V̄ A

i − Vi(a)
]
− β̂p(āAi − a), (8)

This equation compares the trade surplus in each mechanism, which are functions of customers’

difference between their current and their optimal asset holdings. To gain intuition, Figure 2 graphs, for a
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mid-preference customer, these trade surpluses. It presents two salient features. First, as current and optimal

asset holdings get closer, the principal surplus goes to zero but the agency surplus remains at a positive level.

When a customer holds the optimal principal position, aPi , trading on principal would represent no surplus:

the optimal position is already achieved. However, when a customer holds the optimal agency position, aAi ,

trading on agency might still represent a positive expected surplus. This is because, while customers wait

for execution, her preferences might change making her current position no longer optimal.

Second, customers with a larger distance between current and optimal asset holdings trade on prin-

cipal. To analyze this pattern, let me consider a customer who compares whether to buy on principal or

to engage in the agency trade. To further simplify the exposition, consider the limiting case where prefer-

ence shocks arrive with a Poisson intensity close to zero, thus Ūβ
i (a) + β̂V̄ A

i =
ui(a)+βVi(a

A
i )

r+β and āAi = aAi .

Equation (8) can be written:

[rVi(aAi )− ui(a)

r + β

]
︸ ︷︷ ︸

cost of delay

= p(1 + θ − β̂)(aAi − a)︸ ︷︷ ︸
effective price diff

+ [Vi(a
A
i )− paAi ]− [Vi(a

P
i )− paPi ]︸ ︷︷ ︸

gains from trade diff

− pθ(aAi − aPi )︸ ︷︷ ︸
adjustment

The LHS expresses the cost of performing agency trades: while waiting for a suitable counterparty

the customer will hold an unwanted position. The RHS expresses the benefits of performing agency trades.

It is composed of three terms. First, agency trading allows avoiding inventory costs, and so the effective

price paid is lower. Second, given that the effective price of trading on agency is more convenient than that

of principal trading, a customer would trade a larger quantity in the former mechanism than in the latter.

Finally, the transaction cost difference needs to be adjusted for the fact that, if the customer had traded

on principal, she would have bought a smaller quantity, hence the total transaction cost difference paid to

dealers would have been smaller.

The comparison between the costs and benefits of trading on agency tells us why customers with

larger trading needs choose principal trades. Given a customer’s preference type, only the first terms of both

sides of the equation are affected by her current asset holdings. As the distance between current and optimal

asset holdings increases, the cost of delaying the execution increases at a faster rate than the savings given

by the effective price difference. This is because the cost of each extra unit away from the optimal position

is marginally increasing (utility is strictly concave), whereas the effective price difference is constant. Note

that, if preference shocks arrive at a positive rate, the argument follows: customers compare the costs of a

delayed execution and the savings from the difference in effective prices, both terms only being affected by

her current asset holdings.

I summarize the optimal trading mechanism rule for a customer with preference i and asset holdings

a using the asset holding subsets {ΓP
i ,Γ

A
i }Ii=1. These are partitions of the subsets Γi = {Buyi, Selli, NoTi},

which defines what the optimal trading direction is for a customer trading on principal. This notation follows
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Figure 2: Trading mechanism choice.
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Note: This figure depicts the trade surplus under the two trading mechanisms, for a customer with
preference type at the center of the distribution. The optimal asset holdings under the principal trade,
for buyers and sellers, are graphed in dashed lines. The values correspond to the baseline calibration
presented in section 5.3

from the fact that the indifference equation (8) considers the optimal asset position in each mechanism and

that the principal optimal position changes with the trade direction. Therefore, equation (8) needs to be

evaluated separately for customers that, if choose to trade on principal, would buy, sell or keep their current

position. In Appendix A.1 I provide a discussion of how these sets are built.

2.3 Steady-state Distribution and Market Clearing

In this subsection I derive the general equilibrium steady-state equations of the model. As previously stated,

a customer can be fully characterized by the triplet {a, i, ω}. Thus, I first develop the equations needed

to compute the steady-state distribution H(a, i, ω) over such individual states. Second, I state the market

clearing condition to solve for the steady-state equilibrium price p.

Given that the model allows for the possibility of optimally not trading, potentially any initial asset

holding a ∈ R+ might be included in the ergodic set. In such a case, the steady-state equilibrium will
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be conditioned by the initial holdings of assets across customers. In order to prevent such a pathological

case, I focus on calibrations where ∩I
i=1NoT

P
i = ∅. In other words, I focus on equilibria where there is no

asset position such that every type decides not to trade when holding it.15 Under this restriction, given

that πi > 0∀i, every customer with any asset holdings will eventually trade. Hence, in the steady state,

a customer will hold assets a ∈ A∗, where A∗ = ∪I
i=1{a

P,b
i , aP,s

i , aAi }, and the steady-state distribution is

characterized by the vector n[a,i,ω]. Equations (4) and (6) provide the optimal asset position in each kind

of trade, and subsets {ΓP
i ,Γ

A
i }Ii=1, with Γ = {Buy, Sell,NoT}, indicate which kind of trade customers

wish to perform. These policy functions and the three shocks present in the model indicate how to track

customers across the discrete state space. Since, in the steady state, the flow of customers entering and

exiting each individual state should be equal, the following set of inflow-outflow equations computes the

stationary distribution of the model.

n[aP,b
i ,i,ω1]

: δπi
∑
j ̸=i

n[aP,b
i ,j,ω1]

+ α
∑

a∈BuyP
i

n[a,i,ω1] = n[aP,b
i ,i,ω1]

(
δ(1− πi) + α1[aP,b

i /∈NoTP
i ]

)
(9)

n[aP,s
i ,i,ω1]

: δπi
∑
j ̸=i

n[aP,s
i ,j,ω1]

+ α
∑

a∈SellPi

n[a,i,ω1] = n[aP,s
i ,i,ω1]

(
δ(1− πi) + α1[aP,s

i /∈NoTP
i ]

)
(10)

n[aA
i ,i,ω1] : δπi

∑
j ̸=i

n[aA
i ,j,ω1] + β

∑
a∈A∗

n[a,i,ω2] = n[aA
i ,i,ω1]

(
δ(1− πi) + α1[aA

i /∈NoTP
i ]

)
(11)

n[a,i,ω1] : δπi
∑
j ̸=i

n[a,j,ω1] = n[a,i,ω1]

(
δ(1− πi) + α1[a/∈NoTP

i ]

)
, a ∈ ∪j ̸=i{aP,b

j , aP,s
j , aAj } (12)

n[a,i,ω2] : δπi
∑
j ̸=i

n[a,j,ω2] + αn[a,i,ω1]1[a∈ΓA
i ] = n[a,i,ω2]

(
δ(1− πi) + β

)
, a ∈ A∗ (13)

The set of equations (9)-(13) can be represented by a transition matrix T[3I×I×2], with attached

transition probabilities πT
n,n′ , which denote the probability of moving from a state n towards a state n′ in

a given time length. Such a transition matrix can be used to update the vector of individual states masses

until reaching the unique limit invariant distribution n = limk→∞ n0T
k, where n0 is any initial distribution.

Th.11.4 in Stokey, Lucas, and Prescott (1989) provides the conditions for this convergence result.16 Once

solved for the stationary distribution, the market clearing equation can be computed, and thus the steady-

state equilibrium price p can be found. Aggregate gross demand in this secondary market is given by the

weighted sum of individual states demands. Aggregate gross supply, in turn, is fixed by A. Therefore, the

15As will be explained in section 5, the GMM procedure used to estimate the model searches through the parametric space
in an unrestricted manner, yielding a calibration where the restriction here imposed is not binding

16Basically, there should exist at least one state that receives inflows from all states with strictly positive probability. A
sufficient condition for this to happen is that there exists a type i and a type j such that A∗

i ∈ BuyPj , A∗
i ∈ SellPj or

A∗
i ∈ BuyAj ∩ SellAj , where A∗

i = [aP,b
i , aP,s

i , aAi ]. Firstly, πi > 0 ∀i and δ ∈ (0, 1); therefore all types can turn into type i.
Secondly, after customers of type i execute their trades, they go back to the waiting for a dealer stage. Finally, the condition
described guarantees that, when those customers contact a dealer with their preferences i intact, they choose the same trading
mechanism and eventually obtain the same optimal asset position. Thus such latter individual state would receive inflows
directly or indirectly from all individual states. I check numerically and this condition robustly holds.
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equilibrium price is the one at which the following market clearing equation holds:

2∑
h=1

I∑
i=1

∑
a∈A∗

an[a,i,ωh] = A. (14)

Note that, in the steady state, trading occurs constantly but the aggregate asset position is held

constant. Given that all trades are cleared in the inter-dealer market, the market clearing condition (14)

implies that the inter-dealer market is at equilibrium at all times.

2.4 Equilibrium

An equilibrium for this model is defined as a list of optimal asset holdings {aPi (a), aAi }Ii=1, transaction costs

{ϕPi (a), ϕAi (a)}Ii=1, trading mechanism sets {ΓP
i ,Γ

A
i }Ii=1 where Γ = {Buy, Sell,NoT}, stationary distribu-

tion n[a,i,ω] and price p such that {aPi (a), aAi }Ii=1 satisfies (4) and (6), {ϕPi (a), ϕAi (a)}Ii=1 satisfies (3) and

(5), {ΓP
i ,Γ

A
i }Ii=1 are defined using thresholds satisfying (8), n[a,i,ω] satisfies (9)-(13), and p satisfies (14).

In contrast with LR09, where the equilibrium can be found analytically, the model here presented

needs to be solved numerically. The main difference with respect to LR09 in this regard is that current asset

holdings affect not just the optimal portfolio, but also the trading mechanism chosen. To solve for the steady

state of the model for any given inter-dealer price, p, I rely on the value function iteration method, enhanced

with Howard’s improvement step.17 This procedure returns the policy and value functions conditional on p.

In turn, these functions are nested within the computation of equation (14), which solves the inter-dealer

price that clears the market in the steady state. The algorithm is described in detail in Appendix A.2.

3 Equilibrium Allocations

In this section I study numerically the policy functions of the model. For this, I use the parameter values

that will be estimated in section 5. I initially show that customers sort themselves across trading mechanisms

according to their trading needs. After characterizing the pool of trades in each mechanism, I describe how

such characteristics are translated into the transaction costs customers pay.

The policy functions are presented in Figure 3. For each asset holding and preference type pair, {a, i},

I compute both the optimal asset holdings conditional on the trading mechanism and the trading mechanism

choice. Regarding the optimal asset holdings, the lower and upper solid lines represent the buyer’s and seller’s

optimal holdings under the principal trade, aP,b and aP,s, respectively. Conditional on trading on a principal

basis, customers with assets a < aP,b are buyers and customers with holdings a > aP,s are sellers. The

distance between buyers’ and sellers’ optimal holdings is explained by the effective price wedge introduced

17See Appendix B.4 for the necessary and sufficient conditions to use value function iteration as the solution method.
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Figure 3: Optimal asset holdings and trading mechanism choice.
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Note: This figure depicts the estimated model policy functions of each customer, conditional on her
preference type and current holdings. The lower and upper solid lines represent the buyer’s and
seller’s optimal asset holdings under the principal trade, aP,b and aP,s, respectively. The dashed line
represents the optimal asset holdings under the agency trade, aA. Regarding the mechanism choice,
the principal and agency regions are shaded in orange and blue, respectively.

by inventory costs. Customers with current assets a ∈ [aP,b, aP,s] have a principal trading surplus smaller

than the costs faced by the dealers and thus do not trade on a principal basis. The agency optimal holdings,

in turn, are represented by the dashed black line aA. Since dealers face no costs when intermediating on

agency, the effective agency price is between the effective principal buy and sell prices, thus agency optimal

holdings are between those of the principal traders.

Figure 3 also presents the trading mechanism each customer chooses. The blue-shaded area represents

the agency region. In the estimated model, every potential principal non-trader finds that engaging in an

agency trade is better than not trading at all and waiting for a new contact with a dealer. Finally, the

orange shaded area stands for customers that trade on principal. It is observed that principal traders are

concentrated in the extremes of the preference-assets state space. Firstly, conditional on preference types,

principal trading is mostly performed by customers with current asset holdings far away from their optimal

ones. As it was discussed in subsection 2.2.2, this is because the utility loss of each extra unit away from the

optimal position is marginally increasing, whereas the principal premium that needs to be paid to avoid such
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a loss is constant. Secondly, conditional on current asset holdings, principal trading is mostly performed

by customers with extreme preferences. This is because optimal asset positions are increasing in preference

types: customers with extreme preferences will find themselves more often far away from their optimal

position than customers with moderate preferences. Given the relation between trading mechanism choice

and the distance between the current and optimal position, customers with extreme preferences are more

likely to perform principal trades.

I next present the distribution of transaction costs paid by customers. Due to bilateral bargaining,

transaction costs are convex combinations between customers’ expected trading surplus and dealers’ inven-

tory cost. In turn, these objects are functions of the asset holdings and preference held by the customer when

she contacts the dealer, and of the resulting trading mechanism chosen. Figure 4, which maps transaction

costs with the asset-preference state-space, depicts such heterogeneity.

Figure 4: Transaction costs under each trading mechanism.

Note: This figure depicts the estimated model transaction cost paid by each customer, conditional on
her preference type and current asset holdings. The orange-shaded area refers to principal costs. The
blue shaded area refers to (present valued) agency costs.

Overall, the broad features of transaction costs in LR09 still hold. For example, marginal transaction

costs are increasing in the traded volume. A marginally decreasing utility implies that, given a certain optimal
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position the marginal trading surplus is increasing in the volume traded. The bargaining protocol used implies

that transaction costs are linear functions of such surpluses; thus, they inherit the property.18 On top of

this, two interesting properties regarding the trading mechanism distinction are observed. Firstly, principal

transaction costs are on average larger than those of agency trades. On the one hand, principal traders

exchange larger quantities and thus obtain larger trade surpluses. On the other hand, even conditioning on

the customer’s trading surplus, principal transaction costs are still larger than agency, given the inclusion of

the translated inventory costs. This later feature is evident from the presence of jumps at the thresholds.19

Secondly, principal transaction costs increase at a higher rate when moving both towards extreme preferences

and towards larger trading quantities. When customers trade on agency, they are subject to preference

shocks. This implies that agency customers anticipate that both the utility they get from current holdings

and the optimal trading volume may change while waiting for execution. Hence, instead of the certain

immediate trade surplus given by principal trades, agency customers need to consider an average surplus

based on expected preference shocks. Therefore, across the agency region expected trade surpluses, and

consequently transaction costs, are relatively flatter.20

As can be seen, the model yields a rich heterogeneity both across and within trading mechanisms.

Customers with large (small) trading needs and holding relatively extreme (moderate) preference types

choose principal (agency) trades. Accordingly, customers trading on principal bargain a higher average

transaction costs than those trading on agency, regardless of dealers’ costs. Finally, given the possibility of

changing preferences while waiting for execution, transaction costs are relatively flatter across the state-space

within the agency region. These differences will play a key role when addressing composition effects.

4 Transaction Costs Decomposition

In this section, I present the tools necessary to study composition effects. Firstly, I compute average trans-

action costs as theoretical counterparts of the empirical measures. Secondly, I build counterfactual measures

of transaction costs that control for migration. By comparing average and counterfactual measures I obtain

the size and sign of the composition effect.

18Pinter et al. (2024) study the relation between trading costs and trading size in the UK government and corporate bond
markets. In contrast with other empirical papers on the topic, their database has both customers’ and dealers’ identities. This
feature allows them to control for customer cross-section variation when computing the trade size effect. In line with the model
here developed, they show that, conditional on the customer’s identity, trading costs are increasing in trade size.

19If current asset holdings equal asset thresholds, the indifference condition (8) indicates that the net trade surplus for any
preference type under both mechanisms is the same. At such current asset holdings, from the definition of inventory costs
and as long as asset holding thresholds and principal optimal holdings are different, inventory costs will be positive. Given
that transaction costs are convex combinations of customers’ trade surpluses and dealer costs, at the thresholds principal costs
exceed (present valued) agency costs exactly by the inventory costs amount.

ϕP
i (âi)− θp|aPi − âi| = β̂ϕA

i (âi)

This result can be easily obtained combining equations (3), (5), and (8).
20In Appendix B.5 I graph transaction costs per dollar traded. All the features previously mentioned hold if this alternative

specification is considered.
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As a preliminary step, it is useful to regroup the optimal trading mechanism sets. Define Pi ≡

BuyPi ∪ SellPi , Ai ≡ BuyAi ∪ SellAi ∪ NoTA
i , and NTi ≡ NoTP

i , as the sets under which customers of

preference i trade on principal, on agency, or do not trade at contact with dealers.

I compute the volume-weighted average transaction costs for each trading mechanism in two steps. I

first compute the transaction cost per (numeraire) dollar traded. Then these figures are averaged using the

total volume share of each contract as weights. A consideration must be made regarding the computation of

per-dollar costs for agency trades. In such contracts, transaction costs are arranged at contact with dealers

and the optimal asset positions are chosen at execution. While waiting for execution, customers can suffer

preference shocks. Hence, two customers with the same agency contract might end up trading different

volumes. Hence, I compute the aggregated volume for each contract. To do so, I rely on the Law of Large

Numbers and track customers across the state-space while they are waiting for execution. The weighted

average transaction cost in each mechanism, expressed in basis points (bps), is:

SP = 10000×
∑
i∈I

∑
a∈Pi

n[a,i,ω1]|aPi − a|∑
i∈I

∑
a∈Pi

n[a,i,ω1]|aPi − a|
ϕPa,i

|aPi − a|p
, (15)

SA = 10000×
∑
i∈I

∑
a∈Ai

n[a,i,ω1]rava,i∑
i∈I

∑
a∈Ai

n[a,i,ω1]rava,i

ϕAa,i
rava,ip

. (16)

where rava,i stands for the realized agency volume for contracts signed by customers holding i preference

and a assets at the moment of contact with dealers:

rava,i =(1− δ̂)|aAi − a|+ δ̂
∑
j∈I

πj |aAj − a|.

To account for composition effects, I build counterfactual measures of average transaction costs fixing

the samples over which they are measured. To do so, consider firstly alternative parametrizations, denoted by

q, and compute their steady-state trading mechanism sets. Secondly, for each preference type, compute the

intersections across parametrizations between these trading mechanism sets. To ease the exposition, I only

consider two parametrizations, q ∈ {0, 1}, but the method can be easily extended to account for any number

of parametrizations. Table 1 presents the resulting subsets. Diagonal cells include customers that choose

the same trading mechanism under the two scenarios. I call these customers non-migrants. Conversely,

non-diagonal cells include customers who change their optimal mechanism when facing different scenarios. I

call these customers migrants. These subsets allow defining subsamples over which to compute transaction

costs.21

21If Q > 2 number of parametrizations are considered, 3Q number of subsets within a Q-dimension matrix are obtained.
The diagonal of such higher-order matrix defines customers that choose the same trading mechanism under all the alternative
parametrizations. For example, customers with preference i that remain trading on principal regardless of the parametrization

used are those with assets a ∈ ∩Q
q=1P

q
i .
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Table 1: Sample decomposition

P 1
i A1

i NT 1
i

P 0
i P 0

i ∩ P 1
i P 0

i ∩A1
i P 0

i ∩NT 1
i

A0
i A0

i ∩ P 1
i A0

i ∩A1
i A0

i ∩NT 1
i

NT 0
i NT 0

i ∩ P 1
i NT 0

i ∩A1
i NT 0

i ∩NT 1
i

Finally, I decompose the change in transaction costs for each mechanism due to a parametric change.

Consider q = 0 as the initial scenario, and q = 1 as the new one.22

∆SP = SP,1 − SP,0 =SP,1
P 0,P 1 × wP,1

P 0,P 1 − SP,0
P 0,P 1 × wP,0

P 0,P 1︸ ︷︷ ︸
Principal non-migrants

(17)

+SP,1
A0,P 1 × wP,1

A0,P 1 + SP,1
NT 0,P 1 × wP,1

NT 0,P 1︸ ︷︷ ︸
Inflow migration

−SP,0
P 0,A1 × wP,0

P 0,A1 − SP,0
P 0,NT 1 × wP,0

P 0,NT 1︸ ︷︷ ︸
Outflow migration

,

∆SA = SA,1 − SA,0 =SA,1
A0,A1 × wA,1

A0,A1 − SA,0
A0,A1 × wA,0

A0,A1︸ ︷︷ ︸
Agency non-migrants

(18)

+SA,1
P 0,A1 × wA,1

P 0,A1 + SA,1
NT 0,A1 × wA,1

NT 0,A1︸ ︷︷ ︸
Inflow migration

−SA,0
A0,P 1 × wA,0

A0,P 1 − SA,0
A0,NT 1 × wA,0

A0,NT 1︸ ︷︷ ︸
Outflow migration

,

where superscripts attached to cost measures indicate both the trading mechanism and the parameters

used and subscripts, whenever present, denote which trading subsets were used to define the subsample. For

example, SP,0
P 0,P 1 refers to principal transaction costs paid under scenario q = 0 by customers who trade

on principal both under q = 0 and q = 1. In turn, wP,0
P 0,P 1 refers to the volume share accounted for such

transactions under scenario q = 0.

Equations (17) and (18) provide a natural way of defining counterfactual measures of transaction costs

free of composition effects. If the samples within the trading mechanism were held constant, non-migrant

customers would have full weight in all scenarios. Therefore, I define the composition-free measures of

transaction cost under parametrization q, S̃P (q) and S̃A(q), as the costs measured within the non-migrant

samples. In turn, the composition-free measures of transaction cost change, ∆S̃P and ∆S̃A, are set to

22See Appendix A.3 for details.
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account only for such non-migrant figures. Finally, the composition effect measures, CEP and CEA, are

defined as the fraction of the change in transaction costs due to migration.

S̃P (q) ≡ SP,q
P 0,P 1 , (19)

S̃A(q) ≡ SA,q
A0,A1 , (20)

∆S̃P ≡ SP,1
P 0,P 1 − SP,0

P 0,P 1 , (21)

∆S̃A ≡ SA,1
A0,A1 − SA,0

A0,A1 , (22)

CEP ≡ 1−∆S̃P /∆SP , (23)

CEA ≡ 1−∆S̃A/∆SA. (24)

The introduction of composition-free measures of transaction cost changes sheds light on the necessary

conditions for the existence of composition effects. In the first place, migrating customers are needed.

Their absence would imply that the samples under the two scenarios are equal. Secondly, the costs paid

by migrating and non-migrating customers should be different. Otherwise, the in-flowing and out-flowing

migrants would not alter the average costs of each mechanism. Finally, as long as the difference between

costs paid by migrants and non-migrants is driven by unobservable characteristics, empirical estimates would

include a composition effect. Our model suggests that such an unobservable characteristic is the idiosyncratic

trading surplus of each customer, which in turn is a function of both the distance between current and optimal

positions and the idiosyncratic utility each customer derives from holding the assets.

5 Estimation

In this section, I bring the model to the data by targeting key moments of the US corporate bond secondary

market. I initially outline the estimation method. Later I describe how to compute the moments used in such

a procedure, both theoretically and empirically. Finally, I present the estimation results and the moments’

variation that allows for the identification of the parameters.

5.1 Estimation Procedure

The baseline parametrization of the model will consist of a combination of externally calibrated parameters

and estimated parameters. I set the unit of time to be a month. In line with recent research on structural

estimation of related search models (Coen and Coen, 2022; Pinter and Uslu, 2022), I consider a monthly

discount rate of 0.5%. The support of the preferences shifters ϵi is normalized to
{

i−1
I−1

}I

i=1
, with I = 20.

In the model, expanding or contracting the support of ϵi only scales up or down the nominal variables, i.e.,

the inter-dealer price and the transaction costs. Given that I will focus on transaction costs per (numeraire)
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dollar traded, normalizing such support does not affect the results. Similarly, the supply of assets A only

scales up and down both nominal and real variables. Since all real variables will be expressed in terms of

the total asset supply, I normalize A = 1. As was shown in subsection 2.2.1, the bargaining power of the

dealers, η, is closely related to the arrival rate of opportunities to trade, α. In a nutshell, customers are

indifferent between contacting high bargaining power dealers often and low bargaining power dealers scarcely.

This precludes me from disentangling these two parameters, and therefore I opt to externally calibrate the

bargaining power and to estimate the contact rate with dealers. I follow Hugonnier, Lester, and Weill (2020)

and set η = 0.95. Finally, the last object externally calibrated is the probability distribution assigned to each

preference type. I follow Coen and Coen (2022) and assume that such preferences are uniformly distributed,

πi = 1/I ∀i. In the appendix B.8 I show that the main results qualitatively hold when considering lower or

higher bargaining powers or alternative preference distributions.

The remaining parameters of the model are the rates at which customers contact dealers, suffer

preference shocks and execute their agency trades, α, δ and β respectively, the dealer’s marginal inventory

costs, θ, and the utility curvature parameter, σ. I jointly estimate these parameters using the generalized

method of moments (GMM). Particularly, I define the vector υ = [α, δ, β, θ, σ] and estimate υ̂ as the argument

that minimizes the percentage difference between the implied theoretical moments, m(υ), and the computed

empirical moments, ms:

υ̂ = argmin
υ∈Υ

[(m(υ)−ms)⊘ms]
′W [(m(υ)−ms)⊘ms],

where ⊘ is element-wise division. Note that by using percentage deviation I ensure that the scales

of the different moments do not play any role in the procedure. In line with the literature, W is set as the

identity matrix, thus assigning equal weights to the different moments (Coen and Coen, 2022; Pinter and

Uslu, 2022).

5.2 Moments

I choose a set of moments that covers both quantities and prices, as well as the interaction among them. I

target the overall monthly turnover, T , the volume weighted average transaction costs in each mechanism,

SP and SA, and the slopes of the transaction costs over the trade size, for each mechanism, γP and γA. In

particular, to gauge the size of composition effects, it is fundamental to target the differential transaction

costs paid by migrants and non-migrants. Section 6 will show that migrants are located in the extremes of

the trading size distribution, conditional on preference type. Thus matching the slope of transaction costs on

trading size, γP and γA, informs about the differential transaction costs paid by migrants and non-migrants.

In subsection 5.3 I discuss how the variation of these moments can identify the vector of parameters υ.
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5.2.1 Theoretical Moments

For any given vector υ, I compute the theoretical moments using the steady-state equilibrium of the model.

These are:

• Monthly turnover:

T P = 100× 1

A
α
∑
i∈I

∑
a∈Pi

n[a,i,ω1]|a
P
i − a|,

T A = 100× 1

A
β
∑
i∈I

∑
a∈A∗

n[a,i,ω2]|a
A
i − a|,

T = T P + T A. (M.1)

• Volume weighted average transaction cost in each mechanism:

SP = 10000×
∑
i∈I

∑
a∈Pi

n[a,i,ω1]|aPi − a|∑
i∈I

∑
a∈Pi

n[a,i,ω1]|aPi − a|
ϕPa,i

|aPi − a|p
, (M.2)

SA = 10000×
∑
i∈I

∑
a∈Ai

n[a,i,ω1]rava,i∑
i∈I

∑
a∈Ai

n[a,i,ω1]rava,i

ϕAa,i
rava,ip

. (M.3)

• Transaction cost - trade size slope in each mechanism:

γP = 100× cov(ϕP /(|aP − a|p), |aP − a|)
var(|aP − a|)

, (M.4)

γA = 100× cov(ϕA/(rav × p), rav)

var(rav)
(M.5)

where the variance and covariance equations are described in the Appendix B.6.

5.2.2 Empirical Moments

To compute the empirical moments, I rely on transaction data of the US corporate bond secondary market,

from January 2016 to December 2019. Specifically, I use the academic Trade Reporting and Compliance

Engine (TRACE) database, produced by the Financial Industry Regulatory Authority (FINRA).

Given the well-known presence of reporting errors, the data is filtered following the procedure outlined

in Dick-Nielsen and Poulsen (2019).23 I also remove the duplicated inter-dealer trades and those trades in

which dealers transfer bonds to their non-FINRA affiliates for book-keeping purposes (Adrian, Boyarchenko,

and Shachar, 2017).24 I further merge this transaction-level data with bond-level variables from the Mergent

Fixed Income Securities Database (FISD). Following the empirical literature, several filters are applied (e.g.,

23Both the algorithm and the filter results can be downloaded from my personal website.
24Starting on November 2, 2015, FINRA provides explicit labels for the so-called book-keeping trades.
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Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018; Friewald and Nagler, 2019; Kargar, Lester,

Lindsay, Liu, Weill, and Zúñiga, 2021). Among them, the most significant are dropping bonds that are

preferred, convertible or exchangeable, yankee bonds, bonds with a sinking fund provision, variable coupon,

with time to maturity of less than a year, or issued less than two months before the transaction date.25

Needless to say, the empirical transaction costs are partially driven by features not present in my

model, e.g., default risk and asymmetric information. In that regard, to improve the likelihood of my model

capturing the targeted moments I exclude from the sample those bonds that had been labeled as high-yield

at any point during my sample period.26

One important feature of the academic version of TRACE is that it contains anonymous identities for

each dealer. I exploit that feature to identify principal and agency trades. The idea underlying the identifi-

cation is that the shorter the time it takes for a dealer to offload a position, the bigger it is the probability

that those trades had been previously arranged and thus intermediated on an agency basis (Bessembinder,

Jacobsen, Maxwell, and Venkataraman, 2018; Kargar, Lester, Lindsay, Liu, Weill, and Zúñiga, 2021; Choi,

Huh, and Seunghun Shin, 2024). I classify customer-dealer trades into three categories: those that are

quickly offset with other customers, those that are quickly offset with other dealers, and those that are not

offset. The first and third categories are agency and principal trades, respectively. Specifically, for each

customer-dealer trade, I look for all the offsetting trades of the same dealer in the same bond, within a

15-minute window. If at least 50% of its volume was offset, and the majority of such volume was offset with

customers, I label it as an agency trade. If less than 50% of its volume was offset, I label it as a principal

trade. The remaining transactions are disregarded.

Two subtleties about the principal/agency distinction are worth noting. First, this procedure allows

for multiple matching, in the sense that a single trade can be offset by several trades of the opposite direction.

Second, the algorithm may encounter competing trades. In such case, I form pairs with the trades that are

closer in time firstly, and closer in volume secondly.27

Once the data has been filtered and only principal or agency customer-dealer trades are kept, I proceed

to compute the empirical moments. Turnover and average transaction costs are first calculated at the bond

level and later summarized using medians. In turn, the slopes of transaction costs over trade size are

25I also remove bonds that are security backed, equity-linked, putable, foreign-currency denominated, privately placed,
perpetual, sold as part of a unit deal, or secured lease obligations bonds.

26Using standard letter-number equivalences (e.g., AAA=1, D=25), I average the letter ratings of the three agencies present
in FISD: S&P, Moodie’s and Fitch. I then go back to letter ratings using the same equivalence and classify as high-yield a bond
with a rating equal to or lower than BB+.

27Consider for example a dealer that performed four trades in a day, all of them with customers. In trade A the dealer sells
7K at 10:03 am, in trade B she buys 10K at 10:05 am, in trade C she sells 6K at 10:10 am, and in trade D she sells 3K at 10:10
am. In this case, the trades A, C, and D are competing to match with trade B. First I match by time distance, thus trades A
and B form a pair. Trade A offsets all of its volume, so it is considered an agency trade. Trade B offsets 70% of its volume.
The remaining 30% of the 10k are left to be matched with trades C and D. Given that these last trades happened at the same
time, I match according to volume difference. Hence I form a pair with the remaining 3K of trade B and trade D. Again, trade
D offsets all of its volume, so it is labeled as agency. Trade B offsets all of it volume as well, against A and D, so it is labeled
as agency as well. In turn, trade C is labeled as principal.
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computed using a unique regression for each mechanism subsample. To remove outliers, the sample of bonds

is restricted to those that have at least ten observations for each moment computed. The final sample consists

of 2829 securities, which add up 1,602,438 observations. Subscripts t, b, d account for customer-dealer trades

of a particular bond and during a specific day, respectively.

• Bond b monthly turnover:

Tb = 100×
∑

t volt,b/iaob
kb/30.5

, (M.6)

where volt,b is the notional volume in trade t, kb is the day count after offering and before maturity

within the period sample, and iaob is the average amount outstanding during those kb days. Note that

this specification accounts for months in which the bond has no trades at all.

• Bond b volume-weighted average transaction cost in each mechanism:

SP
b =

∑
t,d

(st,b,d × volPt,b,d)/
∑
t,d

volPt,b,d, (M.7)

SA
b =

∑
t,d

(st,b,d × volAt,b,d)/
∑
t,d

volAt,b,d, (M.8)

where st,b,d is Choi, Huh, and Seunghun Shin (2024)’s Spread1:

st,b,d = Q× 10000× (
pt,b,d − pDD

b,d

pDD
b,d

) , pDD
b,d =

∑
t∈DDb,d

volDD
b,d,tp

DD
b,d,t∑

t∈DDb,d
volDD

b,d,t

with Q = 1 (−1) if a customer buys (sells). To reduce the noise coming from micro trades, I only

consider trades in which the volume >$100K (Pinter, Wang, and Zou, 2024). Since prices are expressed

per fixed amount of bond units, the percentage difference between the customer-dealer price pt,b,d and

the inter-dealer price pDD
b,d equals the transaction costs per dollar computed in the model.

• Transaction cost - trade size slope in each mechanism. I estimate the following model for each mecha-

nism subsample:

st,d,b = α+ βFE + γ100(volt,b,d/iaob) + ϵt,b,d, (M.9)

where FE = [dealer, bond, day]. Given that in the model the asset supply is normalized, to match the

theoretical counterpart I consider the ratio between the volume traded and the amount outstanding. In

that regard, the OLS estimates γ̂P and γ̂A are interpreted as how many bps transaction costs increase

with a one percentage point increase in the traded amount outstanding of the bond. Appendix A.4
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presents the regression results.

5.3 Estimation results

To the best of my knowledge, this is the first paper to structurally estimate a search model using the US

corporate bond transaction data. Table 2 presents the estimation results.

Table 2: Baseline Calibration.

Parameter Description Value

- Normalized -
Unit of time 1 month

A Asset supply 1

ϵi Preference shifter
{

i−1
I−1

}20

i=1
- Externally calibrated -

r Discount rate 0.5%
πi Preference shifter distribution 1/I
η Dealer’s bargaining power 0.95

- GMM estimated -
α Contact with dealer rate 9.15
δ Preference shock rate 2.59
β Agency execution rate 1.00
θ Inventory cost (bp) 0.89
σ Utility curvature 2.73

The estimation results tell us that search frictions matter. Customers contact dealers around 9 times

per month, which means that they have to wait roughly 2 business days for an opportunity to update their

holdings. My estimate aligns with recent findings in the corporate bond literature. Wu (2024) exploits

LR09-type equilibrium equations to estimate unobserved trading delays from observed cross-section bid-ask

spreads and liquidity premiums. The author finds that trading delays fluctuate between 2 and 6 days for

IG bonds in my sample period.28. In turn, exploiting electronic platform RFQs and actual trades, Kargar,

Lester, Plante, and Weill (2023) estimate that, after an initial non-completed RFQ, customers take between

2 and 4 business days to execute a trade.

Preference shocks happen with less intensity than trade opportunities. On expectation, a customer

changes preferences around 2.5 times per month.29 On the one hand, the fact that customers change

preferences less often than the rate at which they contact dealers means that not all trading opportunities

are realized. On the other hand, whenever trading does happen, the amount exchanged is larger than what it

28In Wu (2024) model, dealers provide costly intermediation at intensity α and non-costly intermediation at rate β. Trading
delays are defined as 1/(α+ β). Unfortunately, the individual estimates for α and β are not reported.

29While preference shocks arrive at a Poisson rate of 2.59, the probability of receiving a preference different from the current
one is 95%, given the uniform distribution and a support of 20 types.
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would be with a higher preference shock rate: customers can take more extreme positions knowing that those

positions will stay optimal longer. In turn, these larger amounts exchanged translate into higher transaction

costs. Both infrequent trading and high transaction costs are salient features of the secondary corporate

bond market.

In comparison with LR09, two parameters are added. The first of them is β, which accounts for the

expected execution delay of an agency trade. The available data inform us only of when trades are executed,

but not on the initial customer-dealer contact. The estimation results shed light on this scarcely explored

parameter and tell us that the execution waiting times are considerable. Dealers take on expectation one

month to execute agency trades. This estimate responds to the tight link existing in the model between

transaction costs and trading surpluses. Empirical data shows that agency transaction costs are typically

half of those incurred in principal trades. To match such a ratio, the model’s agency and principal average

surplus ratio should be around half as well. This is achieved with a substantial execution delay, represented

by a small β.

Regarding the second novel parameter, the marginal inventory costs θ, the results suggest that these

are considerable: 0.89 bps for a one-way trade. To interpret this number, let me focus on the regulation-

induced costs dealers face when including assets in their inventories. The empirical evidence indicates that

the leverage ratio requirement (LRR) is the most tightly binding constraint for most U.S. banks after the

post-2008 financial crisis regulations were set (Duffie, 2017; Greenwood, Stein, Hanson, and Sunderam, 2017).

The LRR requires banks to hold capital for an amount of 5% of the non-risk-weighted value of assets in

inventory.30 Restricting attention to this most binding regulation, the inventory cost faced by a dealer buying

p(a′ − a) worth of assets, with an average holding period of 10.6 days (Goldstein and Hotchkiss, 2020) and

incurring a daily opportunity cost of r/30%, is 5%[p(a′ − a)(e(r/30)10.6 − 1)]. The model counterpart of such

round-trip principal trade cost would be 2θLRRp(a
′ − a), where θLRR would consider only this specific but

important piece of regulation. The following mapping is obtained: θLRR = 5%[e(r/30)10.6 − 1]/2 = 0.44bps.

The comparison between the estimated marginal inventory costs and this back-of-the-envelope LRR cost

indicates that the estimation is in the right order of magnitude, arguably capturing other non-regulatory

inventory costs.

Finally, the curvature of the utility function is estimated at 2.73. This parameter is related both to

the intensive margin of trading and to the marginal trading surplus. As preferences approach the linear case,

the amounts traded increase, with low (high) preference customers selling (buying) as much as possible.

On the other hand, as preferences become linear, the marginal surplus from trading an extra unit becomes

constant. The estimated value suggests that when customers rebalance positions, they do so in a moderate

way, and that the marginal surplus from trading is increasing.

30The percentage is 3% for non-global systemically important banks with assets over 250 billion dollars, and 5% for global
systemically important banks.
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Table 3: Model Fit

Moment Empirical Theoretical

p50 (ms) p25 p75 m(υ̂)
SP , Principal Vol Weighted Avg Costs 9.12 5.87 14.20 10.29
SA, Agency Vol Weighted Avg Costs 5.00 2.56 8.73 4.04
T , Monthly Turnover 3.27 2.28 4.61 3.47

γ̂ (ms) γ̂ − s.e. γ̂ + s.e.
γP , Principal Cost-Size slope 1.45 1.33 1.58 1.31
γA, Agency Cost-Size slope 0.61 0.50 0.73 0.69

Note: Theoretical moments are computed at the steady state, using the calibration presented in Table 2. Empirical
volume-weighted average cost and monthly turnover are computed at the bond level and summarized by computing the
median and interquartile range. Empirical transaction costs - trade size slope is computed estimating equation (M.9).

Table 3 presents the comparison between the theoretical moments and the empirical ones. Although

existing tensions in the model prevent it from perfectly matching the targeted parameters, the results tell

us that the model can fairly represent the stylized facts this paper is interested in.

5.4 Identification

In this subsection I argue that the moments chosen are informative to jointly pin down the parameter values.

In this regard, a common feature in search models of financial markets is the prevalence of general equilibrium

effects. Typically, assets are valued according to the utility flow and trading opportunities they generate

while customers travel across the state space. Particularly for the model here presented, an asset position

would also determine the likelihood of choosing a given trading mechanism. This model structure implies

that all parameters affect directly or indirectly the policy functions and correspondingly the observable

moments generated. Figure 5 shows that, despite these general equilibrium effects, the different directions

and intensities in which parameters and moments relate allow me to draw a unique mapping between them.

The first column of Figure 5 tells us how the theoretical moments change as we shift the contact rate

with dealers. For this, I solve the model for alternative values of α while keeping all other parameters at their

estimated values. Not surprisingly, turnover is increasing in the contact rate. The extensive margin increases

as more contacts allow customers to trade more often. The intensive margin also increases as optimal asset

holdings become more extreme: the expected time of holding unwanted positions is reduced. Perhaps less

obvious is the diminishing effect α has on average transaction costs and on cost-size slopes. These figures

decrease mainly for the same reason, the surplus from trading is reduced as trading opportunities become

more frequent.

The rate at which customers receive preference shocks has the opposite effect on turnover. Although

the extensive margin increases – the fraction of customers that contact dealers holding unwanted positions
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Figure 5: Theoretical Moments Variation.
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Note: This figure depicts the theoretical moments’ variation as parameters change around their esti-
mated values, which are presented with vertical dashed lines. These parameters are the contact with
dealers rate, α, the preference shock rate, δ, the agency execution rate, β, the inventory cost expressed
in basis points, θ, and the utility curvature, σ. Unchanged parameters are set at their estimated
values.

increases – the decrease in the intensive margin dominates. The latter is due to customers opting for

less extreme positions, in anticipation of more frequent preference shocks. Regarding transaction costs, as

customers expect to change preferences more often, the trading surplus decreases, and so transaction costs

decrease as well. The relation between costs and trade size remains mostly unaffected by this parameter.

This last (lack of) effect hints at why including both average transaction costs and transaction costs - trade

size slopes helps to identify the parameters. For example, changes in α affect trading size and marginal

trading surplus / transaction costs in opposite directions, thus affecting the transaction costs - trade size

slopes. Contrastingly, shifts in δ move both in the same direction, without significant effects on the implied

slopes.

The third parameter in Figure 5 is the execution rate of agency trades, β. Similar to the effect of α on

turnover, increasing the execution rate increases the extensive margin of both agency and principal turnover.

Although optimal asset positions do not significantly change, migration across mechanisms and other general
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equilibrium effects (see section 6.2) imply that the intensive margin also increases. Consequently, the overall

effect on turnover is positive. As expected, a change in the execution rate does not have a major impact on

principal transaction costs or on principal cost-size slope. An increase in β makes the agency contract more

valuable, given that customers will hold unwanted positions for less time, so both agency average transaction

costs and transaction costs derivative on trade size increase. The contrasting effect that the execution rate

has on agency and principal related moments is the main source of identification of this parameter.

In turn, an increase in marginal inventory costs θ decreases turnover and increases principal transaction

costs, in line with the empirical literature findings (see subsection 1.1). Due to general equilibrium effects,

agency transaction costs increase as well. Basically, a less dispersed equilibrium asset distribution makes

the waiting stage for agency trades less costly. Agency trading surpluses increase and dealers bargain larger

transaction costs. This will be explained in detail in section 6.1.

Finally, the curvature of the utility function σ, as previously anticipated, plays two main roles. Firstly,

as preferences become linear the optimal asset positions become more dispersed and the average trade size

becomes larger. This effect increases turnover. Secondly, a lower curvature is translated into lower marginal

trade surpluses and hence into lower marginal transaction costs. Therefore costs-size slopes decrease. What

distinguishes σ from other estimated parameters, and hence accounts for its main source of identification,

is the fact that this parameter does not affect average transaction costs. On the one hand, customers

trade larger amounts thus they pay larger transaction costs. On the other hand, conditional on trade size,

transaction costs decrease. Overall, these two effects cancel out, resulting in a null effect over average

transaction costs.

6 Numerical Exercises

In this section, I use the estimated model to revisit the evidence related to the two major changes observed in

the US corporate bond market in the last decade: the introduction of stricter regulations and the increasing

use of electronic platforms. In both cases, when the economy moves through the parametric space, migration

across mechanisms appears. Using the proposed decomposition, I show that composition effects account for

an economically significant fraction of the changing costs.

6.1 Increase in Inventory Costs

An extensive empirical literature has shown how the stricter regulations implemented in the aftermath of the

2008 financial crisis increased dealers’ inventory costs, raised the cost of principal trades and shifted volume

towards larger agency intermediation (Anderson and Stulz, 2017; Schultz, 2017; Bao, O’Hara, and Zhou,

2018; Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018; Dick-Nielsen and Rossi, 2019; Choi, Huh,
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Figure 6: Policy functions as inventory costs increase.
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Note: This figure depicts the policy functions of each customer, conditional on her preference type and
current holdings, considering θ = 0.89 bps. The lower and upper solid lines represent the buyer’s and
seller’s optimal asset holdings under the principal trade, aP,b and aP,s, respectively. The dashed line
represents the optimal asset holdings under the agency trade, aA. Regarding the mechanism choice,
the principal and agency regions are shaded in orange and blue, respectively. To ease the comparison
across calibrations, the trading mechanism thresholds under θ = 0.1 bps, are depicted as dotted lines
within the agency region, and the arrows denote its expansion.

and Seunghun Shin, 2024). Here I revisit such evidence using the tools previously developed. I initially set

the inventory costs to a smaller value, θ = 0.1 bps, and then I increase it towards the estimated one. Figure

6 shows the policy functions change as we increase inventory costs.

An increase in dealers’ inventory costs makes principal trades more expensive. As a consequence,

customers migrate towards agency trading. To highlight such migration, Figure 6 includes the low inventory

cost case thresholds as dotted lines within the baseline calibration agency region. As can be seen, the agency

region expands, being the migrating customers those with smaller trading needs.31

Figure 7 presents the liquidity measures computed for θ ∈ [0.1bps, 0.89bps]. Panel A shows that, as

inventory costs increase, the overall turnover (black solid line) decreases. On the one hand, the migration

towards agency and the delayed execution of such trades decreases the overall daily number of trades. On

31The optimal asset positions are also affected by an inventory costs increase. Such change is depicted in Appendix B.7. Since
principal trading becomes more expensive, the trade size decreases: buyers (sellers) have lower (higher) optimal asset positions.
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the other hand, the larger effective prices of principal trading make the average volume per trade decrease

in such a mechanism. As expected, a positive relation between inventory costs and agency share (blue solid

line) is present, which is explained by the aforementioned migration of trades.

Transaction costs are jointly determined with trading volumes. Panel B presents the average costs

for each mechanism, SP and SA, in solid lines. As inventory costs rise, dealers translate a fraction of such

increase through higher transaction costs, and so principal trading costs mechanically rise. Comparing the

two extremes of the inventory costs range considered, the average principal cost increases by ∆SP = 0.76

bps. Due to a general equilibrium effect, average agency transaction costs increase as well, by ∆SA = 0.239

bps. Given that immediate trading becomes more costly, customers expect to hold their positions for longer.

Therefore, when choosing these positions, they do so more moderately and the asset dispersion shrinks (see

Figure B.2). This implies that the burden of holding unwanted positions during the agency trade decreases,

increasing both the agency surplus and its transaction costs.

The correlations between inventory costs, migration across mechanisms and average transaction costs

have been broadly documented by both the empirical and the theoretical literature. Contrastingly, the

self-selection of such migration and the consequent composition effect on cost measures have been largely

overlooked. Panel B of Figure 7 accounts for such composition effects using the proposed decomposition. I use

dashed lines to plot the counterfactual composition-free measures, S̃P and S̃A, for each trading mechanism.

Let me start by addressing principal costs. The migration pattern presented in Figure 6 tells us that

principal customers can be split into non-migrants and outflowing migrants. When marginal inventory costs

are set at θ = 0.1 bps, the composition-free measure, i.e., the transaction cost paid by non-migrants, is

already 0.24 bps larger than the mechanism’s average. Such difference is understood going back to Figure

6, where it is observed that non-migrant principals are customers with relatively more extreme preferences

and more extreme asset positions, both characteristics associated with higher transaction cost payments.

As inventory costs increase, some customers migrate towards agency trading and the proportion of non-

migrants increases. This process happens until the entire principal sample is composed by non-migrants.

Mechanically, at the highest inventory cost considered, the composition-free and the average measures are

equal. Therefore, the change in composition-free transaction costs is smaller than that of the mechanism’s

average: ∆S̃P = 0.51bp. The difference is explained by a composition effect of CEP = 32.2%.32 In other

words, when inventory costs increase, the average willingness to pay of the resulting sample increases, given

that those customers who remain trading on principal are the ones who had a higher willingness to pay

before costs increased. Therefore, the average transaction cost change captures this increase in the average

willingness to pay, and is consequently overestimated.

Regarding agency trades, the migration pattern associated with increasing inventory costs tells us that

32Whenever S̃P and SP are linear on θ, the composition effect is constant. Figure 7 indicates that the computed slopes can
be well approximated by linear functions.
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Figure 7: Liquidity measures as inventory costs increase.

0.2 0.4 0.6 0.8
Inventory Costs  (bp)

0

1

2

3

4

5

6
M

on
th

ly
 tu

rn
ov

er
 (

pp
)

60

65

70

75

80

85

90

95

100

%
 A

ge
nc

y 
tu

rn
ov

er
 (

pp
)

0.2 0.4 0.6 0.8
Inventory Costs  (bp)

0

2

4

6

8

10

12

A
ve

ra
ge

 T
ra

ns
ac

tio
n 

C
os

ts
 (

bp
)

Note: Panel A (left) presents the steady-state total daily turnover rate, T , and the agency percentage of
such figure, T A/T , across θ ∈ [0.1bps, 0.89bps]. Panel B (right) presents the steady-state volume-weighted
average transaction costs for both mechanisms across θ ∈ [0.1bps, 0.89bps]. Solid lines represent the average
measures, SP and SA, whereas dashed lines represent the counterfactual composition-free measures, S̃P and
S̃A.

customers in this mechanism can be separated into non-migrants and inflowing migrants. At θ = 0.1 bps,

the entire agency sample is composed by non-migrants. Therefore, at such parametrizations composition-

free and average costs are equal. As inventory costs increase, principal traders migrate towards agency,

building up the proportion of inflowing migrants within the agency sample. At the highest inventory costs

considered, I find that agency non-migrants pay only 0.07% higher costs than the mechanisms’ average.

This mild difference contrasts with the principal case, and it is explained by the small transaction costs

dispersion found within agency customers, which implies that inflowing migrants pay similar costs to non-

migrant customers (see Figure B.1). Given this similarity, composition effects are not expected to play an

important role in agency transaction cost measures. As a matter of fact, when comparing the two extremes of

the parametric range considered, the composition-free measure equals ∆S̃A = 0.242bp, only 0.003bp above

∆SA. Correspondingly, for the agency case, I find a mild composition effect of CEA = −1.2%.

To sum up, the model’s predictions are in line with both the empirical and the theoretical literature

that studies the effects of raising the intermediaries’ inventory costs. In a nutshell, the provision of inventory-

related services becomes more expensive, and intermediation shifts away from principal towards agency
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trading. Nevertheless, the exercise also shows that transaction cost measures should be revisited, considering

the impact that composition effects may have on them. Specifically, I find that these effects account for

around a third of the increase in principal costs, and for a negligible figure on agency cost increases.

6.2 Decrease in the Execution Delay

Corporate bond trading has undergone an electronification process in the last decade. Estimates for 2022

show that 40% of investment grade volume and 31% of high yield volume is traded electronically (McPart-

land, 2023). Compared to traditional voice trading, where customers contact dealers sequentially, electronic

trading allows market participants to expand their trading networks and perform alternative trading proto-

cols, such as central limit order book, bilateral negotiation, and session-based auction. Moreover, all-to-all

electronic platforms let customers bypass dealer intermediation altogether.33 Despite these possibilities, mar-

ket participants exploit electronic platforms mainly as a communication channel, with most electronic trades

still involving customers requesting liquidity from dealers through RFQs.34 The empirical evidence shows

that electronic trading eased dealers’ agency intermediation. Not only the agency share is higher for those

bonds that are traded electronically, but also dealers use electronic platforms to find suitable counterparties

for customers that contacted them through traditional voice messages (Bessembinder, Jacobsen, Maxwell,

and Venkataraman, 2018; O’Hara and Zhou, 2021).

From a customer’s perspective, the increasing market electrification implies that dealers can find a

matching trading counterparty faster. Thus, I model this market innovation with a decrease in the agency

execution delay 1/β.35 I analyze the impact of reducing three times such delay.

The new policy functions are presented in Figure 8. Smaller execution delays imply that agency

customers need to hold unwanted positions for less time, thus the relative attractiveness of such a contract

increases. Consequently, customers with preference type - asset positions close to the baseline calibration

thresholds migrate away from principal towards agency.

The liquidity measures computed for the range β ∈ [1, 3] are presented in Figure 9. Panel A presents

the daily turnover as well as the percentage explained by agency trades. Increasing the execution speed

of non-immediate contracts largely affects the extensive margin, as customers execute their agency trades

faster and return to the waiting-for-dealers stage in search of new principal or agency contracts. A less

obvious effect is the decrease in the intensive margin of agency trading compared to that of principal. A

faster execution implies that agency customers are more likely to avoid a preference shock while waiting

33See Securities Industry and Financial Markets Association (2019) for specific details about electronic trading.
34McPartland (2023) estimates that 68% of corporate bond e-trading is executed via the RFQ protocol, most between

institutional broker-dealers and large investment managers. Additionally, customer-to-customer trades are rare. Exploiting
data from the largest all-to-all trading platform, MKTX Open Trading, Hendershott, Livdan, and Schürhoff (2021) show that
less than 20% of trades are non-intermediated.

35Note that an alternative and non-mutually exclusive interpretation is a reduction in dealers’ searching and matching costs,
which are absent in my model.
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Figure 8: Policy function as execution delays decrease
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Note: This figure depicts the policy functions of each customer, conditional on her preference type
and current holdings, considering β = 3. The lower and upper solid lines represent the buyer’s and
seller’s optimal asset holdings under the principal trade, aP,b and aP,s, respectively. The dashed line
represents the optimal asset holdings under the agency trade, aA. Regarding the mechanism choice,
the principal and agency regions are shaded in orange and blue, respectively. To ease the comparison
across calibrations, the trading mechanism thresholds under β = 1 are depicted as dotted lines within
the agency region, and the arrows denote its expansion.

for execution and trade according to their current preference types. Given that, in the steady state, the

majority of the population is concentrated at the optimal asset positions, more customers trading according

to the current type implies a decrease in the average agency volume per trade.36 Overall, these effects jointly

explain an increase in the daily turnover and a decrease in the agency share.

Panel B of Figure 9 shows the transaction costs in both mechanisms. Again, I decompose these figures

into average and composition-free measures, which are depicted in solid and dashed lines, respectively. As

execution delays decrease, average costs in both mechanisms go up. Principal costs increase by ∆SP =

0.66 bps and agency costs rise by ∆SA = 2.40 bps. Although speeding up agency trades makes trading in

both mechanisms more expensive, the causes behind each of these changes are different. Regarding principal

trades, the new calibration considered has no significant impact on the implied trading surplus of each

36LR09 contains a similar channel by which an increase in the contact rate with dealers, α, produces a steady state with a
bigger accumulation of customers at their optimal positions, decreasing thus the average volume per trade.
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Figure 9: Liquidity measures when execution delays decrease.

1.5 2 2.5 3
Speed of Agency Execution 

0

1

2

3

4

5

6

7

8

9

10
M

on
th

ly
 tu

rn
ov

er
 (

pp
)

60

65

70

75

80

85

90

95

100

%
 A

ge
nc

y 
tu

rn
ov

er
 (

pp
)

1.5 2 2.5 3
Speed of Agency Execution 

0

2

4

6

8

10

12

A
ve

ra
ge

 T
ra

ns
ac

tio
n 

C
os

ts
 (

bp
)

Note: Panel A (left) presents the steady-state total daily turnover rate, T , and the agency percentage of
such figure, T A/T , across β ∈ [1, 3]. Panel B (right) presents the steady-state volume-weighted average
transaction costs for both mechanisms across β ∈ [1, 3]. Solid lines represent the average measures, SP and
SA, whereas dashed lines represent the counterfactual composition-free measures, S̃P and S̃A.

customer. Therefore, keeping samples constant, principal costs should not significantly change. Accordingly,

the counterfactual composition-free measure of principal costs has only a slight increase of ∆S̃P = 0.07bp

and almost the entire increase in average principal costs is due to composition effects, CEP = 89.54%.

The explanation is found in Figure 8. Principal customers with relatively moderate preferences and asset

positions, characteristics associated with low transaction cost payments, migrate away from the mechanism,

increasing the average willingness to pay of the remaining principal sample. Regarding agency trades, a

reduction in expected delays has a direct positive impact on the expected trade surplus of every agency

customer: unwanted positions can be exchanged faster. I compute an increase in the agency composition-

free costs of ∆S̃A = 2.42 bps. Note that this figure is slightly higher than the average measure, which

indicates that inflowing migrating customers have a slightly smaller trade surplus than the non-migrant

agency customers. The corresponding composition effect is negligible, computed at CEA = −1.03%.

The results here obtained provide new insights about the impact that electronic venues have in OTC

markets. By reducing execution delays, these platforms produce a shift in the demand towards agency trades,

thus raising the transaction costs of such a mechanism. An effect over principal costs is also observed, which

operates exclusively through composition effects. As customers shift their demand towards agency, the sample
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of principal traders is reduced and the average surplus from trading on such mechanism increases. Therefore

average immediacy costs spuriously increase. Although not studied here, the demand shifts observed arguably

complement movements in the relative supply of trading mechanisms, due to the decrease in search and

matching costs faced by dealers.

7 Conclusion

OTC markets have undergone several changes during the last decade. Intermediation activities had been

perturbed by both new regulations and new trading technologies, affecting the cost and the speed at which

customers can trade. In this paper, I study how customers optimally face these changing conditions and the

consequences of such reaction over market liquidity and its measurement.

I develop a quantitative search model in which I can explicitly study the customers’ trading mecha-

nism choices. I show that the speed-cost trade-off faced when choosing between principal and agency trades

is solved based on customers’ trading needs, and that such trading needs are translated to transaction cost

measures. The fact that trading mechanisms and transaction costs are jointly determined presents an em-

pirical challenge. Whenever market conditions change, customers endogenously migrate across mechanisms,

thus altering the composition of the samples in which liquidity measures are computed.

To overcome such challenge, I build counterfactual liquidity measures in which composition effects are

controlled for. I estimate the model using corporate bond transaction data and perform numerical exercises

motivated by recent developments in that market. In those exercises, a fraction of principal customers

migrate towards agency trading. Given that those principal customers who did not migrate paid on average

higher transaction costs, the change in principal average costs is overestimated. In particular, composition

effects account for a third of the change in principal transaction costs after an inventory costs increase, and

for almost all of the change after an increase in execution speed. In turn, agency costs are barely affected

by composition effects.

The results here obtained contribute to the debate of whether stricter financial regulations set after

2008 were welfare-improving. If the cost of immediacy has not increased as much as was previously thought,

new regulations may have improved financial soundness at a lower expense.
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Hendershott, T., Li, D., Livdan, D., and Schürhoff, N. (2020). True cost of immediacy. Swiss Finance

Institute Research Paper , (20-71).
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A Appendix

A.1 Trading Mechanism Choice Sets

After subtracting the common term Vi(a), the indifference condition writes:

Vi(a
P
i )− p(aPi − a)− θp|aPi − a| = Ūβ

i (a) + β̂
[
V̄ A
i − p(āAi − a)

]
Firstly, consider the indifference condition for the cases where agents change their positions should they

trade under the principal mechanism. Conditional on increasing or reducing positions, and disregarding the

current valuation Vi(a), the gains from a principal trade increase at a constant rate in current asset holdings

a. This is a direct consequence of modeling constant dealers’ marginal costs and can be seen on the left-hand

side of the indifference equation. On the other hand, in the agency mechanism, the customer keeps his

current asset holdings until some counterparty is found. Given decreasing marginal instant utility, the flow

utility she derives while waiting for execution, Ūβ
i (a), marginally decreases in current asset holdings a. After

the waiting period is over, the customer will obtain a discounted gain from trade, which is also linear in a,

since optimal agency holdings are independent of current holdings (see equation (6)). Therefore, the total

gains from a delayed intermediated trade are marginally decreasing in a. I will exploit these differences in

the two types of trades to find the current asset holdings thresholds as the roots of the indifference condition.

Let us rearrange the arguments of such an indifference equation:

Vi(a
P
i )− p(1 + ψθ)aPi − β̂(V̄ A

i − pāAi )︸ ︷︷ ︸
Bi

= Ūβ
i (a)︸ ︷︷ ︸
Ci(a)

+ pa
(
β̂ − (1 + ψθ)

)︸ ︷︷ ︸
D(a)

,

where ψ = 1 (= −1) if aPi − a ≥ 0 (< 0). The left-hand side, Bi, is independent of current asset

holdings a, while the two arguments on the right-hand side are not. Firstly, Ci(a) is a twice continuously

differentiable, strictly increasing, and strictly concave function that satisfies Inada conditions in current

asset holdings a. Secondly, D(a) is linear in a, and its sign depends on the difference between the expected
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present value of reselling the asset through agency and reselling the asset immediately plus the inventory

cost discount. Given the assumption made about the marginal inventory costs, θ < r
r+β , D(a) is a strictly

decreasing linear function on a, and the right-hand side is thus inverse U-shaped.37

Let us consider now the indifference condition for the cases where customers would not trade if they

were to opt for principal trading. A customer that does not trade derives utility by holding his current

position until the next contact with a dealer. In turn, an agency trader adds up the utility of holding

his current position until the execution of the trade, plus the gains from trade she gets without paying

an immediacy premium. As before, I can rearrange this indifference condition to express its components

according to their dependence on the current position.

−β̂(V̄ A
i − pāAi )︸ ︷︷ ︸
Bi

= Ūβ
i (a)− Vi(a)︸ ︷︷ ︸

Ci(a)

+ paβ̂︸︷︷︸
D(a)

.

The left-hand side, Bi, is still independent of current asset holdings ai. Regarding the right-hand side,

D(a) is linear and strictly increasing in a. In turn, Ci(a) subtracts from a strictly increasing and strictly

concave function a function Vi(a) that, at this point, is unknown. The shape of Ci(a) determines the region

under which customers decide not to trade at all. Given the unavailability of closed-form solutions for the

value function, these regions are characterized numerically. Under all different plausible calibrations, the

numerical solution of the model indicates that Ci(a) +Di(a) is U-shaped.

This analysis indicates that the optimal trading mechanism choice for each preference type can be

characterized by partitions of the subsets Γi = {Buyi, Selli, NoTi}, which in turn define the optimal trading

direction for a customer trading on principal. Formally, define âh,ρi , with h = {1, 2} and ρ = {b, s, nt}, as the

current asset holdings that make customers of type i indifferent between the principal or the agency trade,

where h denotes the threshold number and ρ indicates if the threshold is computed for a potential principal

buyer, seller or non-trader. In turn, define the partitions ΓP
i and ΓA

i as the type-specific subsets of asset

holdings within which a customer of type i would trade on principal or through agency in the steady state,

respectively, for a specific principal trade direction Γi = {Buyi, Selli, NoTi}. The indifference condition

37The parameter values discussed in the calibration section indicate that θ < r
r+β

is not a binding restriction for most

plausible calibrations.
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provides two possible scenarios for each principal trade direction:

Buyi

Bi ≥ Ci(a) +Di(a) ∀a : ΓP
i = Γi.

Bi < Ci(a) +Di(a) for some a : ΓP
i = Γi ∩ {[−∞, â1,bi ] ∪ [â2,bi ,∞)} , ΓA

i = Γi \ ΓP
i .

Selli

Bi ≥ Ci(a) +Di(a) ∀a : ΓP
i = Γi.

Bi < Ci(a) +Di(a) for some a : ΓP
i = Γi ∩ {[−∞, â1,si ] ∪ [â2,si ,∞)} , ΓA

i = Γi \ ΓP
i .

NoTi

Bi < Ci(a) +Di(a) ∀a : ΓP
i = ∅.

Bi ≥ Ci(a) +Di(a) for some a : ΓP
i = Γi ∩ {[â1,nti , â2,nti ] , ΓA

i = Γi \ ΓP
i .

A.2 Solution Method Algorithm

The steady state of the model for any given inter-dealer price, p, is solved using the value function iteration

method, enhanced with Howard’s improvement step. The obtained policy and value functions, conditional on

p, are nested within the computation of the market clear condition 14 to obtain the equilibrium inter-dealer

price. The algorithm can be described by the following steps:

1. Set an initial guess for the equilibrium price p.

(a) Set an asset holdings grid and an initial guess for Vi(a)

(b) Compute optimal asset holdings {aPi (a), aAi }Ii=1 using equations (4) and (6).

(c) Compute trading mechanism choice for each pair {i, a}, using equation (8).

(d) Fix {aPi (a), aAi }Ii=1, and iterate h times the following steps:

i. Update Vi(a) using equation (7).

ii. Compute trading mechanism choice for each pair {i, a}, using equation (8)

(e) Update Vi(a) using equation (7) until convergence.

2. Define trading mechanism sets {ΓP
i ,Γ

A
i }Ii=1 using equation (8).

3. Compute transition matrix T using equations (9), (10), (11), (12) and (13).

4. Set vector n0 and obtain n = limk→K n0T
k, with K sufficiently large to reach convergence.

5. Compute aggregate gross demand and update p until excess demand in equation (14) converges towards

zero.
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A.3 Transaction Costs Decomposition

Here I present the algebra steps needed to decompose the transaction cost measures in equations (15) and

(16). Specifically, I decompose the transaction cost measures computed under some parametrization q = 0,

considering an alternative parametrization q = 1. The decomposition of transaction costs computed for a

different parametrization and considering a different alternative parametrization follow the same steps.
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i
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where rav0a,i = (1− δ̂)|aA,0
i − a|+ δ̂

∑
j∈I πj |a

A,0
j − a|.

A.4 Empirical Transaction Costs - Trade Size Slope

Here I present the estimation results for the equation

st,d,b = α+ βFE + γ100(volt,b,d/iaob) + ϵt,b,d,

where st,b,d is Choi, Huh, and Seunghun Shin (2024)’s Spread1, volt,b,d is the volume traded, iaob is the

bonds’ average amount outstanding, and FE = [dealer, bond, day]. The data employed as well as the

principal/agency distinction is explained in subsection 5.2.2.

Table A.1: Transaction costs - trade size regressions.

Principal Agency

Trade size (pp) 1.45∗∗∗ 0.61∗∗∗

(0.13) (0.12)

Dealer FE Yes Yes

Bond FE Yes Yes

Day FE Yes Yes

Observations 1,505,133 97,305

R2 0.111 0.019

Note: This table provides OLS estimates of the trade-level regression of Choi, Huh, and Seunghun Shin (2024)’s

measure of transaction costs Spread1 on 100vol/iao ratio, dealer fixed effects, bond fixed effects and day fixed effects,

where volt,b,d is the volume traded and iaob is the bonds’ average amount outstanding. The model is estimated

for principal and agency trades separately. Clustered day-bond standard errors are shown in parentheses. One,

two, and three stars indicate statistical significance at the 0.1, 0.05, and 0.01, respectively.

47



B Internet Appendix

B.1 Bargaining Outcomes

Here I compute the bargaining outcomes for the principal and agency contracts. When trading on principal,

execution is immediate, and so the trade surplus of the customer equals the utility gains of re-balancing

positions minus the total price paid for it. On the dealer’s side, her trade surplus equals the transaction cost

charged minus the cost of performing principal trades. Hence, terms of trade optimize the following Nash

product:

[aPi (a), ϕ
P
i (a)] = argmax

(a′,ϕ′)

{
Vi(a

′)− Vi(a)− p(a′ − a)− ϕ′
}1−η{

ϕ′ − θp|a′ − a|
}η

= argmax
(a′,ϕ′)

(1− η) ln[Vi(a
′)− Vi(a)− p(a′ − a)− ϕ′︸ ︷︷ ︸

A

] + η ln[ϕ′ − θp|a′ − a|︸ ︷︷ ︸
B

].

Taking first order condition (FOC) over transaction costs ϕ′:

FOCϕ′ : − (1− η)A−1 + ηB−1 = 0 (assume interior solution)

ηA− (1− η)B = 0

η[Vi(a
′)− Vi(a)− p(a′ − a)] + (1− η)θp|a′ − a| = ϕPi (a)

Second-order conditions can be checked trivially, therefore ϕPi (a) is the unique global maximizer. Now

let us introduce the solution for ϕPi (a) in the maximization argument to obtain (4).

aPi (a) = argmax
a′

{
(1− η)

[
Vi(a

′)− Vi(a)− p(a′ − a)− θp|a′ − a|
]}1−η

{
η
[
Vi(a

′)− Vi(a)− p(a′ − a)− θp|a′ − a|
]}η

argmax
a′

Vi(a
′)− Vi(a)− p(a′ − a)− θp|a′ − a|.

Conditional on the trade direction a principal trader would pursue, current asset holdings can be

partitioned into three subsets, which I denote by Γi ∈ {Buyi, Selli, NoTi}:

Γi =


Buyi : a | [Vi(a′)− a′p]− [Vi(a)− ap] > θp(a′ − a) for some a′ ∈ (a,∞),

Selli : a | [Vi(a′)− a′p]− [Vi(a)− ap] > θp(a− a′) for some a′ ∈ [0, a),

NoTi : a | [Vi(a′)− a′p]− [Vi(a)− ap] ≤ θp|a′ − a| ∀a′ ̸= a.
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Within each subset, optimal asset holdings can be easily characterized:

aPi (a) =


aP,b
i = argmaxa′{Vi(a′)− p(1 + θ)a′} if a ∈ Buyi,

aP,s
i = argmaxa′{Vi(a′)− p(1− θ)a′} if a ∈ Selli,

a if a ∈ NoTi,

Note that, if the value function is increasing and strictly concave in asset holdings, these subsets are

convex and the maximizers are unique. I check numerically both the convexity of the sets as well as the

uniqueness of the maximizers and they both hold robustly.

The agency contract terms of trade can be obtained similarly. A customer’s expected agency trade

surplus is composed by two terms. The first component is her expected utility derived from holding her

current position while waiting for execution. The second component is her expected future gains from re-

balancing her position. On the dealers’ side, their trade surplus is just the discounted transaction cost

collected. Terms of trade when agency is chosen are set according to

{{aAi }Ii=1, ϕ
A
i(t)(a)}

= argmax
{a′′

i }I
i=1,ϕ

′′

{
Ei(t)

[ ∫ Tβ

t

e−r(s−t)ui(s)(a)ds+ e−r(Tβ−t)
[
Vi(Tβ)(a

′′
i(Tβ)

)− p(a′′i(Tβ)
− a)− ϕ′′

]]
− Vi(t)(a)

}1−η{
Et

[
e−r(Tβ−t)ϕ′′

]}η

.

Taking first order condition (FOC) over transaction costs ϕ′′:

FOCϕ′′ : Et[e
−r(Tβ−t)]ϕAi(t)(a) = η

{
Ei(t)

[ ∫ Tβ

t

e−r(s−t)ui(s)(a)ds

+ e−r[Tβ−t]
[
Vi(Tβ)(a

A
i(Tβ)

)− p(aAi(Tβ)
− a)

]]
− Vi(t)(a)

}
Replacing Et[e

−r(Tβ−t)]ϕAi(t)(a) into the Nash product and taking FOC over a′′i , I get equation (6):

aAi = argmax
a′′

{Vi(a′′)− pa′′}.

B.2 Customer’s Value Function Using Bargain-adjusted Contact Rate.

Here I show that the customer’s value function can be rewritten as if the contact rate with dealers was

(1− η)α and the customer had full bargaining power. In other words, the utility flow of an investor trading

at α rate with a dealer with η bargaining power is equal to that of an investor trading at a slower rate

(1− η)α with a dealer with no bargaining power. Let me replace the optimal terms of trade from equations
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(3), (4), (5) and (6) in equation (1).

Vi(t)(a) = Ei(t)

[ ∫ Tα

t

e−r[s−t]ui(s)(a)ds

+ e−r[Tα−t] max
{
(1− η)

[
Vi(Tα)(a

P
i(Tα))− p(aP

i(Tα) − a)− θp|aP
i(Tα) − a|

]
+ ηVi(Tα)(a),

(1− η)V A
i(Tα)

(
a, ϕA

i(Tα)(a) = 0
)
+ ηVi(Tα)(a)

}]
.

Define the time it takes for a customer to receive either the preference shock or the contact with dealers

shock as τδ and τα, respectively. These are exponentially distributed with their corresponding parameters

δ and α. In turn, define τ = min{τδ, τα}. Now consider the above Bellman equation over some small time

horizon h, and let h go to zero:

Vi(a) =
1

1 + rh

[
ui(a)h+ Pr[τ = τα ≤ h]

[
(1− η)max

{
Vi(a

P
i )− p(aP

i − a)− θp|aP
i − a|,

V A
i

(
a, ϕA

i (a) = 0
)}

+ ηVi(a)
]
+ Pr[τ = τδ ≤ h]

[∑
j

πjVj(a)
]
+ Pr[τ > h]Vi(a)

]
=

1

1 + rh

[
ui(a)h+ αh

[
(1− η)max

{
Vi(a

P
i )− p(aP

i − a)− θp|aP
i − a|, V A

i

(
a, ϕA

i (a) = 0
)}

+ ηVi(a)
]
+ δh

[∑
j

πjVj(a)
]
+ (1− δh− αh)Vi(a)

]
=

1

1 + rh

[
ui(a)h+ α(1− η)h︸ ︷︷ ︸

Pr[τ ′=τκ≤h]

[
max

{
Vi(a

P
i )− p(aP

i − a)− θp|aP
i − a|, V A

i

(
a, ϕA

i (a) = 0
)}]

+ δh
[∑

j

πjVj(a)
]
+ (1− δh− α(1− η)h)︸ ︷︷ ︸

Pr[τ ′>h]

Vi(a)
]
,

where τ ′ = min{τδ, τκ} and τκ is the bargaining-adjusted time it takes to contact a dealer, which is

exponentially distributed with parameter κ = α(1− η). Therefore, the customer’s problem is represented by

a Bellman equation where the contact with a dealer happens with Poisson arrival rate (1− η)α, but where

the customers have full negotiation power, η′ = 0.

B.3 Expectations Resolution in the Flow Bellman Equation.

I keep on using τδ and τκ as the time it takes for a customer to receive either the preference shock or the

(effective) contact shock, respectively, and τ ′ = min{τδ, τκ}. In turn, define τβ as the time it takes for a

customer to be matched with another customer after choosing the agency trade. Consider the equation

derived in Appendix B.2 over some small time horizon h, and let h go to zero. For ease of exposition, I
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removed time subscripts.

Vi(a) =
1

1 + rh

[
ui(a)h+ Pr[τ ′ = τδ ≤ h]

∑
j

πjVj(a)

+ Pr[τ ′ = τκ ≤ h] max
{
Vi(a

P
i )− p(aPi − a)− θp|aPi − a|, V A

i (a)
}
+ Pr[τ ′ > h]Vi(a)

]
Vi(a) =

1

1 + rh

[
ui(a)h+ δh

∑
j

πjVj(a)

+ κhmax
{
Vi(a

P
i )− p(aPi − a)− θp|aPi − a|, V A

i (a)
}
+
(
1− (δ + κ)h

)
Vi(a)

]
Vi(a)[�1 + rAh] = ui(a)Ah+ δAh

∑
j

πj [Vj(a)− Vi(a)]

+ κAhmax
{
Vi(a

P
i )− Vi(a)− p(aPi − a)− θp|aPi − a|, V A

i (a)− Vi(a)
}
+���Vi(a)

rVi(a) = ui(a) + δ
∑
j

πj [Vj(a)− Vi(a)]

+ κmax
{
Vi(a

P
i )− Vi(a)− p(aPi − a)− θp|aPi − a|, V A

i (a)− Vi(a)
}
,

where V A
i (a) is the maximum utility a customer expects to get when she chooses the agency trade. Similarly,

I can define this latter function in terms of flow utility as:

rV A
i (a) = ui(a) + δ

∑
j

πj [V
A
j (a)− V A

i (a)] + β
[
Vi(a

A
i )− V A

i (a)− p(aAi − a)
]
,

where 1/β is the time a customer expects to wait until the dealer finds him a counterpart and aAi

is the optimal agency asset position chosen at execution (see equation (6)). Note that, while waiting, the

customer might change his preferences, which is reflected in the second term on the right-hand side of the

above equation. The expression V A
i (a) can be further manipulated to be written as a function of Vi(a). Let

me first obtain the expression for
∑

j πjV
A
j (a):

(r + δ + β)V A
i (a) = ui(a) + δ

∑
j

πjV
A
j (a) + β

[
Vi(a

A
i )− p(aAi − a)

]
(r + �δ + β)

∑
i

πiV
A
i (a) =

∑
i

πiui(a) +

��
���

��
δ
∑
j

πjV
A
j (a) + β

∑
i

πi
[
Vi(a

A
i )− p(aAi − a)

]
∑
j

πjV
A
j (a) =

1

r + β

[∑
j

πjuj(a) + β
∑
j

πj
[
Vj(a

A
j )− p(aAj − a)

]]
.
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Plugging this result into V A
i (a) equation:

(r + δ + β)V A
i (a) = ui(a) +

δ

r + β

[∑
j

πjuj(a) + β
∑
j

πj
[
Vj(a

A
j )− p(aAj − a)

]]
+ β

[
Vi(a

A
i )− p(aAi − a)

]

V A
i (a) =

1

r + β

(r + β)ui(a) + δ
∑

j πjuj(a)

r + δ + β︸ ︷︷ ︸
Ūβ

i (a)

+
β

r + β︸ ︷︷ ︸
β̂

[ (r + β)Vi(a
A
i ) + δ

∑
j πjVj(a

A
j )

r + δ + β︸ ︷︷ ︸
V̄ A
i

−p
[ (r + β)aAi + δ

∑
j πja

A
j

r + δ + β︸ ︷︷ ︸
āA
i

−a
]]

V A
i (a) = Ūβ

i (a) + β̂
[
V̄ A
i − p(āAi − a)

]
Finally, I can include this result in the initial equation, rearrange and define terms in a similar way as

was previously done. The flow Bellman equation of a customer of type i holding assets a waiting to contact

a dealer in any given period is the following:

Vi(a) =

Ūκ
i (a) + κ̂

[
[1− δ̂] max

{
Vi(a

P
i )− p(aPi − a)− θp|aPi − a|, Ūβ

i (a) + β̂
[
V̄ A
i − p(āAi − a)

]}
+ δ̂

∑
j

πj max
{
Vj(a

P
j )− p(aPj − a)− θp|aPj − a|, Ūβ

j (a) + β̂
[
V̄ A
j − p(āAj − a)

]}]
,

where Ūκ
i (a) =

[ (r + κ)ui(a) + δ
∑

j πjuj(a)

r + δ + κ

] 1

r + κ
, κ̂ =

κ

r + κ
and δ̂ =

δ

r + δ + κ
.

B.4 Existence and Uniqueness of the Value Function.

In order to prove the uniqueness of the value function Vi(a), I need to show that the Bellman operator

T , defined as the right-hand side of (7), is a contraction mapping that operates in a Banach space, i.e., a

complete normed vector space. To show completeness, I can rely on Theorem 3.1 in Stokey, Lucas, and

Prescott (1989) - SL89 -, which requires the functions mapped by T to be continuous and bounded. Define

S = R+ × {1, .., I}, C = {g : S → R | g(a, i) is continuous in a and bounded above} and the metric space

(C, ∥.∥), where ∥.∥ denotes the sup norm. I want the right-hand side of equation (7) to belong to C. By

assumption, the utility function ui(a) is continuous, property preserved by the linear combination Ūκ
i (a).

Secondly, each term on the two sides of the max operator is continuous as well. Given the existence of
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thresholds āi that make customers of type i indifferent between the two types of trade, both sides of the

max operator return the same value at those thresholds. Hence, the utility a customer gets when her asset

holdings change and cross a threshold does not suffer a jump. Finally, the stock of assets in the economy

is in fixed supply A ∈ R+, thus individual holdings are bounded. Therefore, T : C → C and (C, ∥.∥) is a

complete metric space.38

Our next step is to show that this operator is a contraction mapping. I will rely on Blackwell’s sufficient

conditions (Theorem 3.3, SL89). Therefore, I need to show that the operator satisfies the monotonicity and

discounting properties.

Monotonicity: Take any pair V 1, V 2 ∈ C such that V 1(i, a) ≤ V 2(i, a), for all {a,i}∈ S. I need to show that

[TV 1](i, a) ≤ [TV 2](i, a), for all {a,i}∈ S. From equation (7), the outcome of the max operators (decision

of trade type) will always be greater or equal under V 2(i, a) than under V 1(i, a), since the arguments under

both principal trade or agency are strictly increasing in the value function considered. The first term in

equation (7) does not depend on the value function, and the second term is a convex combination of these

max operators (with weights (1 − δ̂) and δ̂ respectively), so the weak inequality holds and monotonicity is

achieved.

Discounting: I need to demonstrate that there exist some λ ∈ (0, 1) such that [T (V +ϵ)](i, a) ≤ [TV ](i, a)+

λϵ for all V ∈ C, {a,i}∈ S and ϵ ≥ 0. Consider [T (V + ϵ)](i, a):

[T (V + ϵ)](i, a) =

= Ūκ
i (a)

+ κ̂
[
[1− δ̂] max

{
Vi(a

P
i )− p(aPi − a)− θp|aPi − a|+ ϵ, Ūβ

i (a) + β̂
[
V̄ A
i − p(āAi − a)

]
+ β̂ϵ

}
+ δ̂

∑
j

πj max
{
Vj(a

P
j )− p(aPj − a)− θp|aPj − a|+ ϵ, Ūβ

j (a) + β̂
[
V̄ A
j − p(āAj − a)

]
+ β̂ϵ

}]
= Ūκ

i (a)

+ κ̂
[
[1− δ̂] max

{
Vi(a

P
i )− p(aPi − a)− θp|aPi − a|, Ūβ

i (a) + β̂
[
V̄ A
i − p(āAi − a)

]
− (1 − β̂)ϵ

}
+ δ̂

∑
j

πj max
{
Vj(a

P
j )− p(aPj − a)− θp|aPj − a|, Ūβ

j (a) + β̂
[
V̄ A
j − p(āAj − a)

]
− [1 − β̂]ϵ

}]
+ κ̂ϵ

≤ [T (V )](i, a) + κ̂ϵ

where the last inequality comes from the fact that subtracting a scalar from a component of a max

operator will yield a weakly smaller value. To gain intuition, consider the parametrization case such that

38The trading mechanism choice produces kinks in the value function. At those points, the value function will not be
differentiable. Theorem 3.2 in SL89 only requires continuity, and that is guaranteed by the indifference condition that originates
the kinks. See Kirkby (2017) for a proof of the convergence of the computational solution to the true solution using discretized
value function iteration.
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all customers, i.e., any pair {a,i}, choose the principal trade. In that case, [T (V + ϵ)](i, a) ≤ [TV ](i, a) + κ̂ϵ,

where κ̂ = κ/(r + κ) ∈ (0, 1). Alternatively, consider the parametrization under which every customer

chooses the agency trade. In such case, [T (V + ϵ)](i, a) ≤ [TV ](i, a) + κ̂β̂ϵ, where κ̂β̂ ∈ (0, 1) as well. Any

case in between will yield a discounting factor between these two bounds [κ̂β̂, κ̂].

B.5 Transaction Costs per Dollar Traded

Figure B.1: Transaction costs per dollar traded under each trading mechanism.

Note: This figure depicts the transaction costs per dollar traded paid by each customer, conditional

on her preference type and current holdings, and expressed in basic points. Agency transaction costs

are computed using the expected volume traded for each customer, as is explained in section 4, and

expressed in present value at the moment of contact with the dealer.
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B.6 Theoretical moments details

Here I describe how to compute the variances and covariances needed to calculate the slope between trans-

action costs and trade size. Let me start with the principal case.

cov
( 10000ϕP

|aP − a|p ,
100|aP − a|

A

)
=

∑
i∈I

∑
a∈Pi

n[a,i,ω1]∑
i∈I

∑
a∈Pi

n[a,i,ω1]

(10000ϕP
a,i

|aP
i − a|p

− SP
nw

)(100|aP
i − a|
A

− VP
)
,

var(
100|aP

i − a|
A

) =
∑
i∈I

∑
a∈Pi

n[a,i,ω1]∑
i∈I

∑
a∈Pi

n[a,i,ω1]

(100|aP
i − a|
A

− VP
)2

where SP
nw is the non-weighted average principal transaction costs and VP is the average principal trade size:

SP
nw =

∑
i∈I

∑
a∈Pi

n[a,i,ω1]∑
i∈I

∑
a∈Pi

n[a,i,ω1]

(10000ϕP
a,i

|aP
i − a|p

)
VP =

∑
i∈I

∑
a∈Pi

n[a,i,ω1]∑
i∈I

∑
a∈Pi

n[a,i,ω1]

(100|aP
i − a|
A

)

For the case of agency trades:

cov
(10000ϕA

rav × p
,
100rav

A

)
=

∑
i∈I

∑
a∈Ai

n[a,i,ω1]rafa,i∑
i∈I

∑
a∈Ai

n[a,i,ω1]rafa,i

( 10000ϕA
a,i

rava,i × p
− SA

nw

)(100rava,i
rafa,i

1

A
− VA

)
,

var(
100rav

A
) =

∑
i∈I

∑
a∈Ai

n[a,i,ω1]rafa,i∑
i∈I

∑
a∈Ai

n[a,i,ω1]rafa,i

(100rava,i
rafa,i

1

A
− VA

)2

where SA
nw is the non-weighted average agency transaction costs, VA is the average agency trade size, and

rafa,i is the realized agency fraction of customers in state n[a,i,ω1] who actually end up trading, i.e., those who hold

asset holdings different than their optimal at execution:

SA
nw =

∑
i∈I

∑
a∈Ai

n[a,i,ω1]rafa,i∑
i∈I

∑
a∈Ai

n[a,i,ω1]rafa,i

( 10000ϕA
a,i

rava,i × p

)
VA =

∑
i∈I

∑
a∈Ai

n[a,i,ω1]rafa,i∑
i∈I

∑
a∈Ai

n[a,i,ω1]rafa,i

(100rava,i
rafa,i

1

A

)
rafa,i = (1− δ̂)1aA

i ̸=a + δ̂
∑
j∈I

πj1aA
j ̸=a.

B.7 Optimal Assets with Low and High Inventory Costs

B.8 Quantitative Exercises Robustness Checks

This appendix presents the composition effects (CE) computed for both quantitative exercises, using alternative

values of externally calibrated parameters. I consider alternative preference distributions, with πi ∼ Beta(λ, λ), and

alternative dealer’s bargaining power η. The parameters not affected are kept at their baseline calibration value.
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Figure B.2: Optimal asset as inventory costs increase.
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Note: This figure depicts the optimal asset positions of each customer, conditional on her preference
type and current holdings, considering θ = 0.1 bps and θ = 0.89 bps. The lower and upper solid
lines represent the buyer’s and seller’s optimal asset holdings under the principal trade, aP,b and aP,s,
respectively. The dashed line represents the optimal asset holdings under the agency trade, aA. The
cases for low and high inventory costs are in blue and black, respectively.

Table B.1: Composition Effects under alternative calibrations

λ η
0.2 1 5 0.91 0.95 0.99

∆θ CEP 18.49 32.19 28.65 25.99 32.19 34.58
CEA -0.20 -1.19 0.42 0.50 -1.19 -16.78

∆β CEP 79.64 89.54 101.38 74.71 89.54 105.18
CEA -1.14 -1.03 0.26 -1.09 -1.03 -4.08

Note: This table presents the composition effects resulting from increasing inventory costs θ
from 0.1bps to 0.89bps (rows 1 and 2) and from increasing the agency rate β from 1 to 3 (rows 3
and 4), computed for alternative preference distributions, using πi ∼ Beta(λ, λ), and alternative
dealer’s bargaining power η. The parameters not affected are kept at their baseline calibration
values.
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