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Abstract

This paper studies a recent innovation in the corporate bond market: portfolio trading. In contrast to

sequential trading, this new protocol allows customers to trade a list of bonds as a single security. I show

that these trading features have significant consequences over market liquidity. Particularly, I present

novel evidence of asymmetrical transaction costs: compared to sequential trading, portfolio trading is

less expensive when customers buy and more expensive when they sell. I find that dealers’ balance sheet

costs and portfolios’ diversification explain such differences.
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1 Introduction

The corporate bond market has undergone several transformations in recent years. Market participants

have shifted from trading through voice messages to doing so on electronic platforms (Hendershott and

Madhavan, 2015; O’Hara and Zhou, 2021), dealers have accommodated stricter regulations by relying more

on pre-arranged trades instead of trading with their inventories (Bessembinder, Jacobsen, Maxwell, and

Venkataraman, 2018; Choi, Huh, and Seunghun Shin, 2024), and all-to-all platforms, where customers can

skip dealer intermediation, are becoming increasingly popular (Hendershott, Livdan, and Schürhoff, 2021).

The latest of these innovations is portfolio trading, a new protocol in which market participants can bundle

a set of bonds and trade them as a single security. Although involving higher commitment from dealers, the

electronic platforms that supply this new protocol claim that portfolio trading helps not only to improve

execution quality but also to reduce transaction costs.1

In this paper, I study portfolio trading in the corporate bond market, addressing to what extent

the claims made by electronic platforms hold empirically. I start by addressing the evolution of portfolio

trading. I develop an algorithm to infer portfolios from individually reported trades and find that, starting in

2018, this new protocol has become increasingly popular, both in the customer-dealer and in the inter-dealer

segment. Its provision is highly concentrated among top dealers, who rely on inventories to provide liquidity.

I next turn to study the cost of portfolio trading. Compared to traditional sequential trading, customers sell

portfolios with a penalty and buy portfolios at a discount. These transaction cost differences are explained

by two forces: the overall volume and the overall risk traded. Moreover, portfolio penalties and discounts

are not distributed homogeneously across bonds. I find a significant cross-subsidy within portfolios, where

the traditional bond characteristic pricing is reversed once a bond is included in a portfolio.

The first task I perform is to infer portfolio trades from the Trade Reporting and Compliance Engine

(TRACE). This database only recently (May 2023) adopted a protocol identifier, thus I need to develop

an algorithm to track portfolios back in time. In a nutshell, I look for two counterparts executing many

different bonds in the same second. As expected, the algorithm captures the rise of portfolio trading in early

2018, the period when platforms started offering the service. I find that portfolio trading accounts for more

than 10 billion dollars of monthly volume during late 2020, evenly divided between the customer-dealer and

the inter-dealer segments, capturing 5% of the total market. Recent estimates show that the positive trend

continued during 2021 (Li, O’Hara, Rapp, and Zhou, 2023).

To understand this new protocol, I provide descriptive statistics comparing portfolio and sequential

trading. Portfolios are mainly institutional trades, typically involving around one hundred bonds and 65

million dollars of nominal value. Not surprisingly, its intermediation is concentrated among top dealers,

which have enough sophistication to price all bonds and inventories to back up these trades. I find that

1See, for example, providers Tradeweb and ICE portfolio trading descriptions.
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portfolios affect dealers’ balance sheets, whether because bonds were held in inventories before selling them

to customers or because bonds add up to inventories after being bought in portfolios. Regarding portfolio

composition, I do not find evidence suggesting that customers use this protocol to sell low-turnover bonds,

as portfolios have a lower concentration of low-turnover bonds and a higher concentration of mid-turnover

bonds than sequential trades. I do find evidence of customers trading riskier bonds in portfolios, measured

both by interest rate risk and credit risk.

I next turn to study whether portfolio trading improves or hinders liquidity. To guide the empirical

analysis, I provide a theoretical framework of transaction costs in over-the-counter (OTC) markets. Trading

bonds through portfolios instead of sequentially would increase (decrease) transaction costs if it increases

(decreases) customers’ trading surpluses or dealers’ trading costs. Several portfolio characteristics that may

drive these variables are outlined. Among them, a portfolio implied balance sheet cost, how much risk a

portfolio can diversify, and the likelihood of customers trading on private information at least one of the

bonds included in the portfolio.

The empirical analysis starts by comparing the transaction costs paid by customers when trading bonds

sequentially or through portfolios, controlling for other relevant characteristics of the trade. I find that bonds

traded in portfolios pay on average 17.7% less transaction costs than those traded sequentially. However,

the effect is asymmetric. When customers buy portfolios from dealers, they have a 42.6% transaction cost

discount. Contrastingly, when customers sell portfolios to dealers, they pay a 9.9% penalty. These results

hold robustly when considering alternative model specifications and alternative sample periods.

To understand what factors are behind these discounts and penalties, I proceed in two ways. On the

one hand, I address how individual bonds are priced within the portfolios. I find a significant cross-subsidy

within portfolios: characteristics that are priced in sequential trading are reversed when bonds are included

in a portfolio. On the other hand, I investigate what portfolio characteristics are priced by dealers and in

which direction. I find significant evidence of both balance sheet effects and portfolio diversification effects.

Bonds in large-size portfolios have associated transaction costs up to 36.34 basis points (bps) higher than

those in small-size portfolios. In turn, bonds in portfolios with many bonds – proxy for risk diversification

– pay up to 27.67 bps less to trade than bonds in portfolios with few lines.

Overall, portfolio trading appears as a disruptive innovation in the corporate bond market. It provides

a better quality execution for those customers in need of trading many bonds simultaneously. However, such

improvement in execution quality does not always come for free. As this paper shows, when customers sell

portfolios to dealers, they incur an extra cost compared to that of trading bonds sequentially. These higher

costs can be further exacerbated if portfolios involve large volumes and do not diversify individual bond risk.
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1.1 Related Literature

This paper is related to two strands of the literature. On the one hand, it complements the empirical literature

that studies recent developments in the corporate bond market. For example, the rise of electronic platforms

(Hendershott and Madhavan, 2015; O’Hara and Zhou, 2021) and all-to-all trading (Hendershott, Livdan,

and Schürhoff, 2021), the effect of stricter banking regulations after the global financial crisis (Anderson

and Stulz, 2017; Bao, O’Hara, and Zhou, 2018; Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018;

Dick-Nielsen and Rossi, 2019; Choi, Huh, and Seunghun Shin, 2024; Rapp and Waibel, 2023), or episodes

of big turmoil as COVID-19 (Kargar, Lester, Lindsay, Liu, Weill, and Zúñiga, 2021). I address how the

latest innovation in this market, portfolio trading, is used by customers and dealers and how it affects

market liquidity. On the other hand, this paper informs the theoretical literature on OTC markets, which

models trading in a sequential fashion (Duffie, Gârleanu, and Pedersen, 2005; Lagos and Rocheteau, 2009;

Weill, 2020), and the long-standing theoretical literature on portfolio pricing (Markowits, 1952; Acharya

and Pedersen, 2005), which assumes assets can be traded continuously. In this regard, portfolio trading

offers a unique opportunity to study the pricing of OTC-traded portfolios. I show that portfolio trading is

associated with higher costs when customers sell and lower costs when customers buy, and provide the factors

behind these asymmetries. Finally, this paper closely relates to two independent, contemporaneous works on

corporate bonds portfolio trading. Meli and Todorova (2022) use proprietary data to study investment-grade

portfolios. They find that transaction costs are reduced by over 40% when trading portfolios. I complement

their findings by incorporating the whole universe of portfolios, both investment-grade and high-yield, and

showing that portfolio transaction costs can be larger than sequential costs, especially for large-size and less

diversified portfolios. In turn, Li, O’Hara, Rapp, and Zhou (2023) use the regulatory version of TRACE and

find that portfolios are usually traded at a discount, although that discount is reduced the more balance

sheet dealers accumulate as a result of the portfolio buy. My results show that customers pay higher costs

when selling portfolios than when doing it so sequentially, and that the size of a portfolio increases its costs,

both when customers buy and when they sell, indicating that dealers also translate the balance sheet costs

of those bonds that were held in inventory before the trade.

2 Portfolio Trading: a New Protocol in the Bonds Market

The US corporate bond market is a typical over-the-counter market, where the lack of a centralized ex-

change makes customers search for trading counterparties. Typically, dealers reduce these search frictions

by intermediating transactions, using their own inventories and locating counterparts within their trading

network. Although communications have shifted from phone calls and Bloomberg messages, i.e. voice trad-

ing, to electronic platforms, customer-dealer interactions can still be described in the same following steps.
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Customers would contact dealers requesting quotes, specifying the issue, the trade size, and whether is a buy

or a sell order. Dealers with the capability of providing quotes would compete, and the best quote would

execute the trade. Since neither receiving quotes from dealers nor executing the trade at the winning quote

is guaranteed, the execution uncertainty adds up to the search friction as a major concern for customers in

this market.

In many scenarios, customers would like to trade many bonds simultaneously, e.g. portfolio rebal-

ancing, fixed income exchange-traded funds (ETF) create and redeem process, etcetera. In such cases,

customers would need to contact dealers sequentially, repeating the process previously described for each

bond. In practice, customers engage in list trading: they send a spreadsheet with all the orders to dealers,

who choose whether to offer quotes or not on a bond-by-bond basis. As these quotes are usually not firm,

the process often suffers many back-and-forth iterations until all bonds are traded, turning list trading into

a long and laborious practice.

As an improving alternative to sequential trading, electronic platforms such as ICE, MarketAxess, and

Tradeweb started offering a new trading protocol called portfolio trading. This protocol allows customers

to bundle a list of bonds and trade them as a single security. Through electronic platforms, customers put

dealers in competition requesting quotes for the entire portfolio of bonds, in an all-or-none fashion. If the

customer agrees, the portfolio is executed at the best quote received.

Compared to sequential trading, portfolio trading offers a better execution quality, as it reduces the

time it takes to execute all desired trades and guarantees that all bonds within the portfolio are executed.

Notwithstanding these benefits, electronic platforms claim that portfolio trading also minimizes information

leakage, as the number of dealers contacted to execute all bonds would be reduced, and helps to trade

illiquid bonds, which dealers would not be willing to trade unless structured into a bigger package. Moreover,

portfolio trading is supposed to be cheaper than sequential trading. The argument behind such a claim is

that, through portfolio diversification, customers reduce the risk dealers are asked to trade, and so the pricing

of the bonds included in the portfolio improves. In the following sections I test many of these claims.

3 Data and Portfolio Trading Summary Statistics

In this section I describe the data used and how I identify portfolio trades. I show that portfolio trades

represent a significant and growing fraction of the market and that its intermediation is concentrated among

top dealers, who source bonds using their balance sheets. Finally, I provide relevant summary statistics

comparing portfolio and sequential trades.
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3.1 Data

I rely on three databases to study portfolio trading in the corporate bond market. The first and main

data source is the academic version of the TRACE database, produced by the Financial Industry Regulatory

Authority (FINRA). This data contains all corporate bond secondary market transactions reported by broker-

dealers registered as member firms of FINRA. Importantly, the academic version of TRACE contains dealers’

identifiers, which allows me to infer portfolio trades out of bundled trades. I extend this data with the Mergent

Fixed Income Securities Database (FISD), which contains a broad set of bond characteristics not present

in TRACE. Finally, I obtain complementary time-series variables from the Federal Reserve Economic Data

(FRED). The period considered spans from January 2016 to December 2019.

To produce the final data set, I start by filtering TRACE out of reporting errors, duplicated observa-

tions, and book-keeping observations. This database is built out of reported trades, and thus it may contain

reporting errors. I follow the procedure outlined in Dick-Nielsen and Poulsen (2019) to remove such errors 2.

I further remove duplicated inter-dealer trades, i.e. trades that are reported twice as both counterparts are

reporting dealers. Finally, I delete those trades in which dealers transfer bonds to their non-FINRA affiliates

for book-keeping purposes (Adrian, Boyarchenko, and Shachar, 2017).3

Next, I extend the filtered database by adding bond-level variables from FISD. To remove idiosyncratic

features of bond contracts that may bias the transaction costs analysis, I follow the empirical literature and

apply several filters (e.g., Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018; Friewald and Nagler,

2019; Kargar, Lester, Lindsay, Liu, Weill, and Zúñiga, 2021). Among them, the most significant ones are

dropping bonds that are preferred, convertible or exchangeable, yankee bonds, bonds with a sinking fund

provision, variable coupon, with time to maturity of less than a year, or issued less than two months before

the transaction date. I also remove bonds that are security-backed, equity-linked, putable, denominated in

foreign currency, privately placed, perpetual, sold as part of a unit deal, or secured lease obligations bonds.

Finally, aiming at capturing only institutional investors, I remove trades of less than ten thousand

dollars in face valuation. In this regard, Pinter, Wang, and Zou (2024) shows that transaction costs paid by

retail and institutional investors significantly differ. As it will be shown in subsection 3.3, unlike sequential

trades, portfolio trades are mostly institutional-size trades. Therefore, removing small trades allows for

a fair comparison between sequential and portfolio trades. The final database is composed of 24,782,434

observations from 15,231 different bonds.

2Both the algorithm and the filter results can be downloaded from my personal website.
3Starting on November 2, 2015, FINRA provides explicit labels for the so-called book-keeping trades.
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3.2 Portfolio Trades Identification

The structure of the data requires a strategy to identify portfolio trades. On the one hand, every bond

traded is reported as a single observation, regardless of the trading protocol used, i.e. portfolio or sequential

trading. On the other hand, there is no trading protocol flag for the period analyzed in this study. In this

regard, although electronic platforms started offering portfolio trading in early 2018, its potential economic

significance among scholars and researchers has been acknowledged only recently. As a result, an explicit

flag for portfolio trades is absent in TRACE for observations reported before May 15, 2023.4 In the following

paragraphs, I describe how I identify portfolio trades by using observations’ characteristics.

A portfolio trade is the exchange of a bundle of bonds by two counterparts at a unique price. Clearly,

the characteristics of this trade impose several restrictions on the individual reporting of the bonds that

form the portfolio. I use these restrictions to identify portfolio trades. First, all bonds should be traded at

the same time. Second, only two counterparts should be involved in the transaction. Third, the amount

of bonds traded should be enough to be considered a bundle. Finally, there should be no duplicated bonds

within a portfolio. The following algorithm identifies as portfolio trades those bundles of individual reports

that satisfy the aforementioned restrictions:

1. Build bundles of bonds traded by the same dealer, in the same second, against the same counterpart.

2. Remove the duplicated bonds within those bundles.

a If the counterpart is another dealer:

i. Remove all duplicated bonds

b If the counterpart is a customer:

i. Remove those duplicated bonds that have the same trade side, i.e. buy or sell.

ii. Keep bundles in which there are no duplicated bonds or where all bonds are duplicated with

observations of the same volume but with opposite trade sides.

3. Tag as portfolio trades those bundles that, after the duplicated bonds removal, include ≥ 30 bonds.

In the first step of the algorithm, I build bundles of bonds that are traded by the same dealer, in the

same second, against the same counterpart. In the second step, I clean those bundles from duplicated bonds.

As can be seen, this latter step treats inter-dealer and customer-dealer trades differently. This responds

to the lack of customer identifiers in TRACE. Specifically, when the algorithm requires to build bundles

of bonds traded against the same counterpart, in the case of customer-dealer trades we cannot be sure if

the bonds are being traded with a unique customer or with many customers. Thus, I cannot remove all

4See FINRA Regulatory Notice 22-12.
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duplicated bonds in a customer-dealer bundle, as I may be dealing with a case where a dealer buys a portfolio

from a customer and sells the same portfolio to another customer at the same time. Instead, I approach the

removal of duplicated bonds in customer-dealer bundles in two steps. First, I remove only those duplicated

bonds that have the same trade side, i.e. buy or sell. This step mostly captures bundles formed entirely by

observations of the same bond and same trade side (95.46% of observations removed belong to such bundles).

Second, after the removal of duplicated bond-side observations, I only keep bundles with no duplicated bonds

or those in which we can clearly observe two symmetric buy and sell portfolios. Finally, the third step is a

portfolio minimum-size filter consistent with the discussions held by the Securities Industry and Financial

Markets Association (SIFMA) and FINRA about the appropriate threshold to trigger a portfolio trading

flag in TRACE. 5

The strategy to identify portfolio trades is in line with strategies used by other authors. Meli and

Todorova (2022) matches proprietary data on investment-grade portfolio requests for quotes with TRACE.

With those matched observations, they build a clustering algorithm that resembles the one here presented.

In turn, Li, O’Hara, Rapp, and Zhou (2023) uses TRACE and improves over the clustering algorithm of Meli

and Todorova (2022) performing different refinements. Among these refinements, their algorithm deletes

all duplicated bonds in a cluster, thus mechanically removing any customer-dealer portfolio trade that is

immediately offloaded with another customer. By capturing those portfolios, I can speak to the sourcing of

portfolios and how they impact transaction costs.

Finally, it is worth noting that the algorithm to identify portfolio trades better suits an environment

of infrequent trading. In other words, if dealers execute several transactions every second, a bundle of

sequential trades randomly executed at the same second against the same counterpart could be mistakenly

inferred as a portfolio trade. This is especially problematic in the case of customer-dealer inferred portfolios,

as the counterpart identity is unknown. In the Appendix A.1 I show that dealers do not trade frequently.

Particularly, Table A.1 shows, for those dealers that perform portfolio trades, both how many seconds pass

by between two customer-dealer trades and how many customer-dealer trades are performed in every second

in which at least one trade is performed. The distribution of these variables shows that bundles of more

than 30 bonds traded between dealers and customers are a rare event, which only happens at the extreme

tail of the distribution.

Figure 1 shows the monthly evolution of the identified portfolio trading volume. As expected, the

identified portfolio trading volume sharply rose in early 2018, i.e. when electronic platforms started offering

the protocol, reaching more than 10 billion dollars of monthly trading during the second half of 2019. The

market share mimics this pattern, reaching 5% of the total volume traded in the secondary corporate bond

market. In the Appendix A.2 I show that these patterns hold in the two market segments, i.e. inter-dealer

5See SIFMA response to FINRA’s Regulatory Notice 20-24 - Proposed Changes to TRACE Reporting Relating to Delayed
Treasury Spot and Portfolio Trades.
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and customer-dealer, and if we consider the number of trades instead of volume.

Figure 1: Portfolio trading volume - All segments
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Note: This figure depicts the monthly time-series of portfolio trading volume, including both customer-

dealer and inter-dealer trades. The bars –left axis– indicate total face value, expressed in billion dollars.

The line –right axis– indicates market share, expressed in percentage points.

3.3 Portfolio Characteristics

In this subsection, I present descriptive statistics of the portfolios identified in subsection 3.2. I restrict the

sample in two ways. On the one hand, since the main focus of this paper is to study transaction costs, I

restrict the analysis to customer-dealer trades. Two reasons explain this decision. First, in the customer-

dealer segment it is clear who demands liquidity (customers) and who provides it (dealers). Thus, transaction

costs reflect the price paid to dealers to supply liquidity. Second, I will show that the trade side is a leading

factor of transaction costs, and this variable is only relevant when we know who is providing liquidity. On

the other hand, as electronic platforms started offering the portfolio trading alternative in early 2018, I

restrict the sample to the period that goes from January 2018 to December 2019. The final sample consists

of 7,633,744 customer-dealer individual trades, including 1,558 portfolios that account for 154,587 of those

trades.
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I start by addressing the size of portfolios. Table 1 shows that these are typically comprised of around

one hundred bonds, although they can reach up to more than three hundred issues. The bonds in a portfolio

are usually distributed across several issuers. Regarding the volume traded, it is clear that portfolio trading is

performed by institutional investors: the average portfolio involves 65.4 million dollars and 95% of portfolios

involve more than 2 million dollars (face value).

Table 1: Portfolios Size.

Mean Std. dev. .05 .25 .50 .75 .95

Bonds # 99.2 108.5 31.0 39.0 57.0 109.0 323.2

Issuers # 74.5 65.0 27.0 35.0 49.0 86.0 213.2

Portfolio Size $M 65.4 155.3 2.1 8.9 23.0 58.8 255.4

Trades Size $M 0.81 1.75 0.04 0.14 0.34 0.68 3.00

Next, I turn to the question of whether customers use portfolio trading to buy, sell, or change the

composition of the bonds they hold. This is particularly relevant as electronic platforms allow to mix buy and

sell orders within a portfolio, thus customers can use the protocol to rebalance positions avoiding a timing

mismatch between buying and selling and the risk implied by it. Figure 2 shows that portfolio trading is used

for different strategies. 42% of portfolios are full customer buys and 30% are full customer sells, representing

40% and 28% of the portfolio volume of our sample. The remaining fraction is composed of mixed portfolios.

A small caveat should be mentioned at this point. Given my portfolio identification strategy, if a

dealer decides to upload the buy orders and the sell orders of a mixed portfolio at different times, I will

consider that mixed portfolio as two independent buy and sell portfolios. Although rare, Meli and Todorova

(2022), by matching portfolio requests for quotes with actual trades from TRACE, shows that such cases

exist. To address this concern, I combine those buy and sell portfolios executed by the same dealer within

a 15-minute window (the maximum time allowed by FINRA to report trades after execution), and obtain

that only 4% of the full buy or full sell portfolios can be considered as two legs of mixed portfolios.
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Figure 2: Share of customer sell trades in portfolios
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Note: This figure depicts the distribution of customer sell trades percentage in portfolios. For each

portfolio, I compute the percentage of customer sell trades. Bars express the number of portfolios

with a certain percentage of customer sells.

Turning to the supply side, I observe that portfolio trading is highly concentrated among top dealers.

The top three portfolio dealers accumulate 86% of the volume traded (87.46% of the bonds traded). These

dealers happen to account for a large market share in the sequential protocol as well, suggesting that only

big sophisticated dealers are able to price and trade the large number of bonds and volume implied by

portfolios. In Appendix A.3 I show that this concentration is stable over time, although the market shares

of some dealers fluctuate, as is expected with any new technology.

Table 2: Concentration of dealer intermediation of portfolio trades

Trades % share Volume % share
Dealer Portfolio Sequential Portfolio Sequential

1 35.29 6.66 49.93 10.20
2 21.17 4.29 18.65 8.88
3 31.00 1.73 17.40 0.71
4 3.17 3.12 6.50 8.09
5 2.32 2.86 3.33 8.51
6 3.29 3.95 2.46 7.49
7 1.46 2.72 0.72 8.18
8 0.27 1.76 0.25 5.35
9 0.30 0.09 0.20 0.03
10 0.21 0.32 0.16 0.34
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The aforementioned market concentration is related to how bonds are sourced. In this regard, I find

that dealers use their balance sheets when performing portfolio trades. To get this result, I follow the

literature (Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018; Kargar, Lester, Lindsay, Liu, Weill,

and Zúñiga, 2021; Choi, Huh, and Seunghun Shin, 2024) and classify all customer-dealer trades into three

categories: those that are quickly offset with other customers, those that are quickly offset with other dealers,

and those that are not offset. Specifically, for each customer-dealer trade, I look for all the offsetting trades

of the same dealer in the same bond, within a 15-minute window. If at least 50% of its volume was offset, and

the majority of such volume was offset with customers (dealers), I label it as “Offset ≤ 15 - C” (‘Offset ≤ 15

- D”). If less than 50% of its volume was offset, I label it as “Non-Offset”. 6 Only this last “Non-Offset”

category of trades affects dealers’ balance sheets. Table 3 shows that the large majority of bonds traded

through portfolios belong to such a category. These figures are much higher than those of sequential trading,

where dealers tend to offset a larger fraction with other customers. These results are in line with the high

concentration of portfolio trading among large dealers, as these are the ones with large enough balance sheet

capacity to accommodate portfolios. 7

Table 3: Sourcing of Portfolio - Volume

Market Share Portfolio Sourcing Sequential Sourcing
Ofsset ≤15m Non-Offset Offset ≤15m Non-Offset

Dealer Portfolio Sequential C D C D

1 49.9 10.2 3.5 1.7 94.8 16.6 3.4 80.0
2 18.6 8.9 4.3 1.7 94.0 17.4 3.3 79.3
3 17.4 0.7 0.0 1.7 98.3 0.0 1.6 98.4
4 6.5 8.1 3.2 1.2 95.6 16.6 3.4 79.9
5 3.3 8.5 14.7 0.3 85.0 21.7 2.3 76.0
6 2.5 7.5 0.7 0.3 99.0 15.9 2.5 81.5
7 0.7 8.2 0.1 1.6 98.4 18.1 2.5 79.4
8 0.2 5.3 0.0 0.1 99.9 24.1 3.7 72.2
9 0.2 0.0 0.0 99.5 0.5 0.6 70.4 29.0
10 0.2 0.3 0.0 100.0 0.0 0.0 100.0 0.0

Note: This tables shows, for each of the top ten portfolio trading dealers, its portfolio trading market share
(column 2), its sequential trading market share (column 3), the distribution in the three categories – Offset
≤ 15 - C, Offset ≤ 15 - D, Non-Offset – of its portfolio trading activity (columns 4-6) and sequential trading
activity (columns 7-9). All statistics are computed using volume traded, measured at face value.

Finally, I turn to the characteristics of the bonds included in a portfolio. In Table 4, I look at trade size,

turnover, time to maturity, and credit rating, comparing how these variables are distributed in the portfolio

and sequential trading subsamples. Appendix A.5 explains in detail the construction of these variables. As

previously noted, portfolio trading is mostly formed by institutional-size trades. Whereas more than 60%

6Two subtleties about this categorization are worth mentioning. First, this procedure allows for multiple matching, in
the sense that a single trade can be offset by several trades of the opposite direction. Second, the algorithm may encounter
competing trades. In such case, I form pairs with the trades that are closer in time firstly, and closer in volume secondly.

7These patterns hold if we perform the categorization using a 30-minute window, or if we consider the number of trades
instead of the volume traded. See Appendix A.4.
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of sequential trades do not surpass 100 thousand dollars, less than 30% of portfolio trades belong to that

category. Surprisingly, portfolios do not seem to be biased towards bonds with smaller turnover. Electronic

platforms claim that portfolio trading could improve the liquidity of low-turnover bonds, as packaging helps

dealers mitigate the risk of miss-pricing bonds for which transactions are rare.8 I cannot find evidence

supporting such a claim. Finally, we observe that portfolios have a somewhat higher concentration of riskier

bonds, both considering time to maturity as a proxy for interest rate fluctuation risk and (to a lesser

extent) credit risk. This higher concentration of riskier bonds in portfolios is not surprising, as the implied

diversification reduces the overall risk of the position.

8See for example electronic platform Tradeweb’s “Portfolio Trading: An Innovative Solution for Corporate Bond Trading”.
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Table 4: Trade characteristics of portfolio and sequential trades

Trades % share Volume % share

Portfolio Sequential Portfolio Sequential

Trade Size

Micro (≤100K) 29.24 60.76 2.52 2.63

Odd (100K-1M) 59.02 24.32 34.44 12.60

Round (1M-5M) 10.19 11.75 34.61 40.49

5M and above 1.55 3.17 28.44 44.28

Turnover

(0%-10%] 18.30 25.47 21.34 17.43

(10%-25%] 43.29 45.46 44.55 40.17

(25%-50%] 29.28 20.52 26.49 27.70

>50% 9.13 8.54 7.63 14.70

Time to Maturity

(1-3] 9.96 22.47 11.57 15.70

(3-5] 21.32 23.17 20.50 19.47

(5-10] 46.36 37.24 43.14 40.50

>10 22.36 17.12 24.78 24.33

Rating

IG superior 3.98 6.52 5.44 5.30

IG inferior 42.50 65.99 57.35 59.10

HY superior 48.59 23.51 33.96 28.06

HY inferior 4.93 3.98 3.25 7.54

Note: This tables shows how portfolio trades and sequential trades are distributed across partitions of trade

size, turnover, time to maturity, and credit rating. The first two columns compute percentages using the

number of trades. The last two columns compute percentages using the face value volume traded.

4 Transaction Costs

By construction, portfolio trading offers some advantages to those customers seeking to trade many bonds.

For example, the protocol binds customers from holding temporary unwanted positions that would occur

if they were to trade the bonds sequentially. Notwithstanding, it has been argued that portfolio trading is

also cheaper than sequential trading, as dealers provide better prices for portfolios than for the sum of the

individual bonds that compose them. In this section, I study such a claim. I start by providing a theoretical

14



framework of transaction costs. Later, I provide trade-level evidence of transaction cost differences between

portfolio and sequential trading and which factors drive those differences.

4.1 Theoretical Framework

To study whether portfolios are traded at a discount or penalty, I start by providing a theoretical framework

that explains how transaction costs are settled. I follow the bulk of the literature on OTC markets and assume

that the terms of trade are the outcome of bilateral bargaining, a natural assumption as counterparts in this

market trade bilaterally instead of in a centralized exchange. 9 In particular, I assume that the quantity

traded q and the transaction cost that a customer pays to a dealer φ(q) are solved through Nash bargain10:

[q∗, φ(q)∗] = arg max
(q,φ)

{
CS(q)− φ(q)

}1−η{
φ(q)−DC(q)

}η
where CS and DC denote the customer surplus and the dealer cost, respectively, and η ∈ [0, 1] reflects

the dealer’s bargaining power. The solution to this maximization problem tells us that, if there are gains

from trade (CS>DC), the resulting transaction cost is a convex combination of the dealer cost and the

customer surplus:

φ(q)∗ = ηCS(q) + (1− η)DC(q) (1)

Equation (1) reveals that the effect of portfolio trading over transaction costs will be explained by

how this new protocol affects customers’ surpluses and dealers’ costs. On the one hand, the customer surplus

is increased due to better execution quality. As previously mentioned, when customers need to trade many

bonds, they may be temporarily exposed to unwanted positions while all their trades are executed. Portfolio

trading allows for simultaneous execution, thus avoiding such a risk. This larger consumer surplus should

translate into higher transaction costs for portfolios. On the other hand, the dealers face different costs

when trading portfolios or trading sequentially. First, as it was documented in subsection 3.3, portfolios

are large institutional-size trades that affect dealers’ balance sheets. In contrast with sequential trading,

where a dealer can gradually offset positions keeping its balance sheet close to its target, portfolio trading

implies large deviations from it. These deviations are costly to dealers (e.g. regulatory cost) and thus should

translate into higher transaction costs. Second, portfolios comprise a large number of bonds issued by several

firms. The resulting diversification of expected payoffs reduces the amount of risk being traded, decreasing

thus dealers’ costs. The more diversified a portfolio is, the smaller the transaction costs we should expect

to observe. Last but not least, portfolio trading may be used by customers who have private information

9For a review of this literature, see Weill (2020)
10Duffie, Gârleanu, and Pedersen (2007) model explicitly a bilateral bargaining game where agents make alternate offers.

They show that the powers of the Nash product equal the probabilities of making an offer in such a game.
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about some assets but do not want to signal it through an individual order. Dealers may anticipate this

strategy and penalize the entire portfolio. Consequently, this channel would decrease the transaction costs

of the bonds for which private information is held and increase that of the remaining bonds.

In the next subsection, I initially answer whether portfolios are trading at a penalty or at a discount.

Later, I study the drivers behind the differences found, following the hypotheses aforementioned.

4.2 Transaction Costs Discounts and Penalties

Transaction costs are computed as the Spread1 measure of Choi, Huh, and Seunghun Shin (2024). Particu-

larly, the transaction cost TC compares each customer-dealer trade price with a reference price, the latter

given by the (volume-weighted) average price that the same bond has during the same day in the inter-dealer

market.11

TCi,b,d = Q× (
pi,b,d − pDDb,d

pDDb,d
)× 10, 000 , pDDb,d =

∑
i∈DDb,d

volDDb,d,ip
DD
b,d,i∑

i∈DDb,d
volDDb,d,i

where i, b, and d denote trade, bond, and day, respectively, Q is a trade side indicator that equals 1 (-1) if

the customer buys (sells) bonds, and the multiplication by 10.000 expresses transaction costs as basis points

deviations from the inter-dealer price.12

As a first approximation, in Table 5 I present how transaction costs are distributed within the portfolio

and sequential subsamples. Clearly, those bonds that are traded within portfolios do so at smaller transaction

costs: while the average transaction cost in portfolio trading is 8.6 bps, the average cost in sequential trading

is 31.3 bps.

Table 5: Transaction costs by trade type.

Transaction Costs (bps)

Mean Std. dev. .05 .25 .50 .75 .95

Portfolio 8.6 41.5 -42.5 -7.4 5.9 23.0 67.7

Sequential 31.3 82.3 -19.3 0.5 10.9 37.7 164.4

Of course, these transaction cost differences may be driven by factors other than the inclusion of a

trade in a portfolio. I improve the analysis by computing the transaction costs differential associated with the

11Alternative transaction costs measures had been used in the empirical fixed income literature, among them Amihud (2002)
price impact and Feldhütter (2012) round trip costs. The accuracy of these measures relies on having close-in-time consecutive
trades of the same bond, a feature hardly observed in the portfolio trading subsample.

12As is the case with any measure of transaction costs, the elements needed for its construction restrict the sample for which
we can compute it. In this case, the only restriction is for dealer-customer trades to match with an inter-dealer trade of the
same bond happening on the same day. In Appendix A.6 I show how such restriction affects the samples of portfolio trades
and sequential trades.
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inclusion of a bond in a portfolio trade, conditional on several bond and trade characteristics. Specifically,

I estimate through OLS the following empirical model:

TCi = α+ β1i=Portfolio + ΓCi + ΛFE + εi, (2)

where TCi denotes the transaction cost of trade i, the dummy variable 1i=Portfolio indicates if such trade

belongs to a portfolio trade, and the vectors Ci and FE includes bond and trade characteristics and several

fixed effects, respectively. Regarding bond and trade characteristics, I control for age, amount outstanding,

time to maturity, credit rating, trade size, and whether the trade was performed by a dealer who performs

portfolio trading.13. In turn, the model includes day, issuer industry, dealer, and bonds fixed effects, which

are used according to each specification of equation (2). Standard errors are double clustered by bond and

date.

The first column of Table 6 presents the baseline estimation results. The coefficient associated with

including a bond in a portfolio, controlling for several priced characteristics, is negative and significant. The

transaction cost of a bond executed through portfolio trading is expected to be 5.53 bps smaller than that of a

bond executed through sequential trading. Taking into account the mean transaction costs presented in Table

5, this represents a 17.7% discount. The results show that transaction costs are also led by the type of dealer

that intermediates: dealers who trade portfolios (typically big dealers) charge smaller transaction costs. The

coefficients associated with the remaining controls are in line with previous findings in the literature (e.g.,

Edwards, Harris, and Piwowar, 2007). Bonds issued in large amounts have smaller transaction costs, as these

are easier to price and trade. Bonds far away from maturity are more expensive to trade, a result related to

these bonds having higher interest rate risk and more uncertainty in their valuation. Larger trades (> 100K)

are cheaper than smaller trades, driven probably by the identity of the investors, a variable not available in

my data sets (Pinter, Wang, and Zou, 2024). As expected, worse credit-rated bonds are traded at higher

transaction costs, as dealers translate the implied risk cost to customers.

13See Appendix A.5 for the detailed computation of these variables.
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Table 6: Transaction costs regression on trade characteristics.

Dependent Variable: Transaction Cost

Baseline Dealer FE Bond FE No DST No Offset No Mixed

Portfolio -5.53∗∗∗ -4.54∗∗∗ -3.32∗∗∗ -4.91∗∗∗ -6.24∗∗∗ -4.87∗∗∗

(0.74) (0.64) (0.67) (0.84) (0.76) (0.89)

Portfolio Dealer -26.11∗∗∗ -20.75∗∗∗ -26.08∗∗∗ -26.63∗∗∗ -26.07∗∗∗

(0.45) (0.36) (0.45) (0.47) (0.45)

Age 0.04 -0.26∗∗∗ 0.03 0.02 0.03

(0.13) (0.09) (0.13) (0.13) (0.13)

Amount Outstanding -2.71∗∗∗ -1.93∗∗∗ -2.71∗∗∗ -2.75∗∗∗ -2.71∗∗∗

(0.40) (0.31) (0.40) (0.40) (0.40)

Time-to-maturity 3-5 7.76∗∗∗ 6.97∗∗∗ 7.75∗∗∗ 8.05∗∗∗ 7.77∗∗∗

(0.60) (0.51) (0.60) (0.61) (0.60)

Time-to-maturity 5-10 18.74∗∗∗ 14.98∗∗∗ 18.77∗∗∗ 19.41∗∗∗ 18.78∗∗∗

(0.72) (0.55) (0.72) (0.73) (0.72)

Time-to-maturity >10 48.49∗∗∗ 36.06∗∗∗ 48.65∗∗∗ 49.76∗∗∗ 48.63∗∗∗

(1.53) (0.96) (1.53) (1.55) (1.53)

Odd (100K-1M) -20.23∗∗∗ -8.51∗∗∗ -16.68∗∗∗ -20.29∗∗∗ -20.13∗∗∗ -20.33∗∗∗

(0.43) (0.22) (0.37) (0.43) (0.43) (0.43)

Round (1M-5M) -28.32∗∗∗ -12.82∗∗∗ -22.82∗∗∗ -28.47∗∗∗ -28.10∗∗∗ -28.49∗∗∗

(0.65) (0.39) (0.56) (0.65) (0.64) (0.65)

5M and above -23.79∗∗∗ -9.44∗∗∗ -19.19∗∗∗ -23.99∗∗∗ -22.65∗∗∗ -23.98∗∗∗

(0.62) (0.37) (0.49) (0.62) (0.63) (0.62)

IG (A-BBB) 8.04∗∗∗ 3.63∗∗∗ 8.06∗∗∗ 8.20∗∗∗ 8.06∗∗∗

(0.67) (0.46) (0.67) (0.68) (0.67)

HY (BB-B) 24.17∗∗∗ 15.73∗∗∗ 24.25∗∗∗ 25.34∗∗∗ 24.27∗∗∗

(0.99) (0.67) (0.99) (1.02) (0.99)

HY (CCC-D) 48.34∗∗∗ 39.85∗∗∗ 48.48∗∗∗ 52.17∗∗∗ 48.54∗∗∗

(3.33) (3.06) (3.33) (3.57) (3.34)

Day FE Yes Yes Yes Yes Yes Yes

Issuer Industry FE Yes Yes No Yes Yes Yes

Dealer FE No Yes No No No No

Bond FE No No Yes No No No

Observations 6,300,985 6,300,985 6,307,999 6,279,622 6,021,275 6,276,809

Adjusted R2 0.095 0.202 0.141 0.095 0.109 0.095

Within R2 0.093 0.030 0.031 0.093 0.107 0.092

Note: This tables provides OLS estimates of the trade-level equation (2). The baseline specification regresses transaction cost

on a portfolio trade dummy, a portfolio dealer dummy, age, amount outstanding, time to maturity, credit rating, trade size, day

fixed effects and issuer industry fixed effects. Alternative specifications include dealer fixed effects (column 2), bond fixed effects

(column 3), the exclusion of portfolios executed within a 5-minute window of delayed spot times (column 4), the exclusion of

“Offset≤ 15m - C” trades (column 5), and the exclusion of mixed portfolios (column 6). Clustered day-bond standard-errors

are shown in parentheses. One, two, and three stars indicate statistical significance at the 0.1, 0.05, and 0.01, respectively.
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The main result of transaction costs being smaller for those trades included in portfolio trading holds

under alternative specifications. I firstly account for dealer-heterogeneity and its effect on transaction costs

(e.g. Colliard, Foucault, and Hoffmann, 2021). The second column of Table 6 shows that the result holds

when imposing dealers’ fixed effects. To fully account for bond time-insensitive characteristics, in specification

three I include bond fixed effects. I observe that the portfolio discount holds, although to a lesser extent

than in the baseline model. I also consider a specification where I remove those portfolio trades executed

within a 5-minute window of popular delayed spot times: 11.00, 15.00, 15.30, 16.00, and 16.30. These times

of the day are used to execute trades that had been priced as a spread over some reference price, leading

thus to an accumulation of trades that may be mistakenly inferred as portfolio trading. Column four tells

us that removing those observations does not affect the results. Another robustness check performed is to

remove from the sample trades that are offset within a 15-minute window with other customers. In this kind

of trade, there are no dealers’ balance sheets involved, and thus transaction costs are typically smaller. As

such trades are more prevalent in sequential trading, its presence in the sample would underestimate the

portfolio trading discount. The estimated coefficient of column five confirms the claim. In addition to the

previous robustness checks, I estimate the model using only full buy or full sell portfolios. Mixed portfolios

may not imply balance sheet cost, as buy and sell orders net out, removing one of the channels that affect

transaction costs. Again, column six shows that results hold robustly. Finally, given that portfolio trading

is a new protocol, it may be the case that dealers initially offered better pricing as a strategy to gain market

power. In that case, the discount observed would not be sustained when the market matures. In untabulated

estimations, I see that all results hold if we restrict the sample to the period June 2019 to December 2019,

discarding thus this hypothesis.

Considering that, among the four hypotheses cited, only portfolio diversification would reduce trans-

action costs, it is surprising to see a discount holding robustly across all specifications. To further understand

this result, I study whether customers pay different transaction costs when buying or selling portfolios. If

dealers’ balance sheet costs respond asymmetrically to deviations from the target, e.g. penalizing more

positive deviations than negative ones, it would be expected to observe a portfolio trading asymmetric effect

on transaction costs. I formally test for asymmetric effects by estimating an extended version of equation

(2):

TCi = α+ β11i=Portfolio + β21i=Cust. sells + β31i=Portfolio1i=Cust. sells + ΓCi + ΛFE + εi, (3)

Equation (3) decomposes the portfolio trading subsample into those trades in which customers buy

and those in which customers sell bonds, with associated coefficients β1 and β1 + β3, respectively. The

estimation results are presented in Table 7. The estimates of the coefficients in Γ, similar to those presented

in Table 6, are left untabulated to ease the presentation.
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I find strong evidence about portfolio trading being correlated with asymmetric pricing. When cus-

tomers buy portfolios from dealers, they pay 13.34 bps less for each bond compared to what they would

pay when buying them sequentially. In turn, when customers sell portfolios to dealers, they pay 3.09 bps

more than when doing it sequentially. These numbers represent a 42.6% discount when buying and a 9.9%

penalty when selling portfolios, respectively. The asymmetric coefficients hold robustly when I estimate all

the alternative model specifications described when presenting Table 6.

Table 7: Transaction costs regression on trade characteristics and trade side.

Dependent Variable: Transaction Cost

Baseline Dealer FE Bond FE No DST No Offset No Mixed

Portfolio -13.34∗∗∗ -10.78∗∗∗ -10.92∗∗∗ -13.45∗∗∗ -14.32∗∗∗ -13.16∗∗∗

(0.92) (0.79) (0.85) (1.01) (0.94) (1.02)

Customer Sell -9.54∗∗∗ -6.94∗∗∗ -9.13∗∗∗ -9.55∗∗∗ -9.00∗∗∗ -9.55∗∗∗

(0.47) (0.43) (0.43) (0.47) (0.48) (0.47)

Portfolio × Customer Sell 16.43∗∗∗ 13.34∗∗∗ 15.96∗∗∗ 17.99∗∗∗ 16.92∗∗∗ 18.69∗∗∗

(1.53) (1.42) (1.46) (1.72) (1.56) (1.87)

β1 + β3 3.09∗∗ 2.56∗∗ 5.04∗∗∗ 4.54∗∗∗ 2.6∗∗ 5.53∗∗∗

(1.22) (1.11) (1.12) (1.38) (1.24) (1.56)

Day FE Yes Yes Yes Yes Yes Yes

Issuer Industry FE Yes Yes No Yes Yes Yes

Dealer FE No Yes No No No No

Bond FE No No Yes No No No

Observations 6,300,985 6,300,985 6,307,999 6,279,622 6,021,275 6,276,809

Adjusted R2 0.098 0.204 0.144 0.098 0.113 0.098

Within R2 0.096 0.032 0.034 0.096 0.110 0.096

Note: This tables provides OLS estimates of the trade-level equation (3). The baseline specification regresses transaction cost

on a portfolio trade dummy, a customer sell dummy, the interaction of the portfolio trade and customer sell dummies, a portfolio

dealer dummy, age, amount outstanding, time to maturity, credit rating, trade size, day fixed effects and issuer industry fixed

effects. Alternative specifications include dealer fixed effects (column 2), bond fixed effects (column 3), the exclusion of portfolios

executed within a 5-minute window of delayed spot times (column 4), the exclusion of “Offset≤ 15m - C” trades (column 5), and

the exclusion of mixed portfolios (column 6). To ease the exposition, some estimates are left untabulated. Clustered day-bond

standard-errors are shown in parentheses. One, two, and three stars indicate statistical significance at the 0.1, 0.05, and 0.01,

respectively.

The evidence in Table 7 suggests that large balance sheet expansions may be playing a role when

dealers price portfolios, as incoming portfolios are penalized. These results are in sharp contrast with those

found in previous studies (Meli and Todorova, 2022; Li, O’Hara, Rapp, and Zhou, 2023), where portfolio

trading is consistently less expensive than sequential trading. In the next section, I formally study the
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alternative drivers behind the found discounts and penalties.

5 Transaction Costs Drivers

To study what drives the differences in transaction costs between portfolio and sequential trading, I proceed

in two steps. Firstly, I address how individual bonds are priced within the portfolios. This analysis answers

questions regarding whether some segments of the market, e.g. risky bonds or small issues, are driving the

effects seen in subsection 4.2. I find a significant cross-subsidy within portfolios: characteristics that are

priced in sequential trading are reversed when the bond is included in a portfolio. Secondly, I investigate

what portfolio characteristics are priced by dealers and in which direction. I enhance the trade-level estima-

tions using portfolio characteristics and find significant evidence of both balance sheet effects and portfolio

diversification effects.

5.1 Bonds Transaction Cost Drivers and Portfolio Trading

I start by extending the baseline equation (2) interacting all variables in the vector C with the portfolio

trading dummy. Since trades within portfolios are priced differently according to their side, I estimate this

equation for buy trades and sell trades separately.

TCi = α+ β1i=Portfolio + Γ1Ci + Γ2Ci1i=Portfolio + ΛFE + εi, (4)

The estimation results are presented in Table 8. To simplify the exposition, I present in the second

and fourth columns the estimated coefficients of the interacted variables. As can be seen, there is a clear

pricing reversal within portfolios. For example, bonds with high credit risk (CCC-D) are costly to trade

when doing so sequentially, paying 44.2 bps and 31.4 bps more than low-credit-risk bonds (A-BBB). However,

when those low-rated bonds are included in a portfolio, their pricing improves and the risk effect is partially

canceled out. A similar pattern happens with virtually all variables included in vector C.

The observed price reversal is not surprising, as portfolios allow to diversify the risk implied by holding

a single security. To deepen into this idea, I follow the long-standing Capital Asset Pricing Model tradition

and compute what fraction of a bond (excess) returns variance is explained by factors other than markets’

fluctuations (see Appendix A.5). The higher this fraction is, the larger the diversification gains a bond

inherits when it is included in a portfolio, and so we should expect large price reversals. Table 8 supports

this hypothesis, with a full reversal for customer buys and a partial reversal for customer sells.

On top of estimating all the different specifications described in Tables 6 and 7, under which the

price reversal holds robustly (untabulated), I perform one additional check specific to this result. Although

dealers should report the price of each specific bond traded to FINRA, portfolios are traded at a unique
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price. Since the portfolio price is the one with economic significance, it may be the case that the individual

prices reported for portfolio trading bonds are non-informative. Taking the argument to the limit, any vector

of prices for which its (volume-weighted) sum equals the portfolio price could be reported. This would give

room for a mechanical price reversal, in which all bond prices within a portfolio are reported to be equal.

I discard such a claim relying on two facts. First, TRACE provides incentives for dealers to upload prices

according to market valuation, regardless of the trading protocol used. Particularly, “TRACE will validate

the price that the user has submitted by comparing it to other recent transactions in the same security. If the

reported price is substantially different than the price determined by TRACE to be the “current market” for

that security, an error message will be generated.”.14 Second, in Appendix A.7, I show that the pricing of

bond characteristics within portfolios follows the same patterns as in sequential trading, rejecting thus the

hypothesis of a non-informative reported price vector.

14See TRACE User Guide 2023, p31.
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Table 8: Transaction costs regression on trade characteristics interacted with portfolio trading.

Dependent Variable: Transaction Cost

Customer buys Customer sells

× Portfolio × Portfolio

Portfolio 41.80∗∗∗ 22.04∗∗∗

(2.87) -2.56

Portfolio Dealer -30.94∗∗∗ -14.93∗∗∗

(0.57) -0.4

Age -0.39∗∗ 0.59∗∗∗ 0.73∗∗∗ -1.02∗∗∗

(0.17) (0.21) (0.1) (0.21)

Amount Outstanding -0.82∗∗ 1.10∗∗ -1.76∗∗∗ -0.75∗

(0.37) (0.48) (0.3) (0.40)

Time-to-maturity 1-3 -13.56∗∗∗ 12.80∗∗∗ -4.56∗∗∗ 3.74∗∗∗

(0.72) (1.12) (0.88) (1.26)

Time-to-maturity 5-10 16.75∗∗∗ -16.92∗∗∗ 6.08∗∗∗ -2.28∗∗

(0.88) (1.12) (0.6) (0.96)

Time-to-maturity >10 60.05∗∗∗ -49.47∗∗∗ 19.93∗∗∗ -14.86∗∗∗

(2.08) (3) (0.97) (3.07)

Micro (<100K) 24.49∗∗∗ -25.34∗∗∗ 11.54∗∗∗ -8.07∗∗∗

(0.54) (1.16) (0.38) (1.48)

Round (1M-5M) -12.83∗∗∗ 19.93∗∗∗ -4.72∗∗∗ 8.84∗∗∗

(0.58) (1.48) (0.47) (1.93)

5M and above -10.12∗∗∗ 34.24∗∗∗ 0.85 11.45∗∗∗

(0.76) (9.7) (0.56) (2.46)

IG (AAA-AA) -6.50∗∗∗ 5.89∗∗∗ -1.39∗∗∗ 2.60∗∗

(0.76) (1.29) (0.45) (1.30)

HY (BB-B) 20.85∗∗∗ -19.21∗∗∗ 9.50∗∗∗ -8.61∗∗∗

(1.11) (1.6) (0.65) (1.64)

HY (CCC-D) 44.20∗∗∗ -36.75∗∗∗ 31.38∗∗∗ -26.73∗∗∗

(4.21) (5.04) (3.69) (4.67)

Idiosync. var. share 35.89∗∗∗ -37.30∗∗∗ 27.42∗∗∗ -13.48∗∗∗

(2.81) (3.46) (2.07) (3.09)

Day FE Yes Yes

Issuer Industry FE Yes Yes

Observations 3,814,350 2,349,074

Adjusted R2 0.145 0.051

Within R2 0.142 0.046

Note: This tables provides OLS estimates of the trade-level equation (4). Transaction cost is regressed on a portfolio trade

dummy, a portfolio dealer dummy, trade characteristics –age, amount outstanding, time to maturity, credit rating, trade size,

and idiosyncratic variance share–, the interaction of trade characteristics and the portfolio trade dummy, day fixed effects and

issuer industry fixed effects. Equation (4) is estimated for customer buy trades and customer sell trades separately. Columns 2

and 4 show the estimates for the interacted trade characteristics. Clustered day-bond standard-errors are shown in parentheses.

One, two, and three stars indicate statistical significance at the 0.1, 0.05, and 0.01, respectively.
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5.2 Portfolios Transaction Cost Drivers

Once shown that the characteristics that drive transaction costs in sequential trading are partially reversed

when bonds are traded through portfolios, I proceed to address what portfolio characteristics determine

its transaction costs. I expand equation (2) decomposing the portfolio dummy into a vector that locates

portfolios into several categories:

TCi,p = α+ β1i=Portfolio + ΓCi + ∆1i=PortfolioDp + ΛFE + εi,p, (5)

where vector D includes portfolio characteristics: number of bonds, volume Herfindahl-Hirschman Index

(HHI), credit rating average, standard deviation compared to its i.i.d. counterfactual, amount outstand-

ing average, and aggregate volume (see Appendix A.5). Except for the HHI, the remaining variables are

incorporated as dummies that indicate if a portfolio belongs to a specific bin regarding quartile partitions.

The set of portfolio variables aims to cover alternative hypotheses that may drive dealers to charge

customers different prices when trading portfolios than when trading those bonds sequentially. First, the

aggregate volume of each portfolio tells us how much balance sheet space a dealer needs to incur, thus

addressing directly the balance sheet channel. Second, I use several variables that indirectly measure the gains

from risk diversification a portfolio can provide. The variance of portfolio returns mechanically decreases in

the number of bonds and increases when portfolio weights are concentrated, the latter considering a scenario

where all bonds have similar individual variances. Additionally, when the average credit rating is high, there

is more room for portfolios to diversify away the default risk. Finally, I compute the ratio between the return

volatility of the portfolio and the one it would have should all the bonds in it be independently distributed.

The smaller this ratio the higher the gains from diversification. The last channel tested is the asymmetric

information channel: dealers may penalize portfolios when they infer that customers have private information

about one or many bonds in the portfolio. I use the average amount outstanding as a proxy of customers’

(lack of) private information, as larger bonds tend to have a wider investor base Brugler, Comerton-Forde,

and Martin (2022). To further investigate the asymmetric information channel, I also estimate alternative

equations where I exploit time-series information and the ex-post performance of the bonds traded.

Equation (5) is estimated for full buy, full sells, and mixed portfolios separately. In each case, port-

folio trading bonds are compared with sequential buys, sells, and buys and sells, respectively. Again, the

coefficients associated with bond characteristics in C are not shown to ease the exposition. Table 9 presents

the estimation results.
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Table 9: Transaction costs regression on portfolio characteristics.

Dependent Variable: Transaction Cost

Full Cust Buy Full Cust sell Mixed Cust Buy and Sells

Balance Sheet

Portfolio × Volume 25-50 pctl 16.89∗∗∗ 5.66∗ 2.72

(2.10) (3.00) (1.96)

Portfolio × Volume 50-75 pctl 24.78∗∗∗ 6.61∗∗ 9.59∗∗∗

(2.71) (2.97) (2.30)

Portfolio × Volume 75-100 pctl 36.34∗∗∗ 9.11∗∗ 25.29∗∗∗

(3.31) (4.30) (4.22)

Risk Diversification

Portfolio × # Bonds 25-50 pctl -9.11∗∗∗ -0.11 -8.30∗∗∗

(2.48) (2.48) (2.17)

Portfolio × # Bonds 50-75 pctl -17.45∗∗∗ 8.02∗∗ -12.82∗∗∗

(3.67) (3.56) (3.45)

Portfolio × # Bonds 75-100 pctl -27.67∗∗∗ -5.74 -21.60∗∗∗

(4.98) (6.48) (5.27)

Portfolio × HHI -104.45 -53.22 -35.16∗∗

(66.14) (44.38) (16.76)

Portfolio × Avg Rating 25-50 pctl -1.06 4.28 -0.76

(2.93) (2.87) (3.46)

Portfolio × Avg Rating 50-75 pctl -5.25 -6.69∗ -10.53∗∗

(3.26) (3.63) (4.27)

Portfolio × Avg Rating 75-100 pctl -8.66∗∗∗ -5.37 -9.52∗∗

(3.25) (3.63) (4.13)

Portfolio × SD/SDiid 25-50 pctl 2.76 -1.44 4.50∗∗

(2.42) (2.78) (1.97)

Portfolio × SD/SDiid 50-75 pctl 0.39 -2.27 1.77

(3.84) (4.47) (2.29)

Portfolio × SD/SDiid 75-100 pctl -5.67 4.82 1.76

(4.99) (7.61) (2.90)

Asymmetric Information

Portfolio × Amount Outs. 25-50 pctl 1.91 1.53 4.08∗

(2.29) (3.23) (2.35)

Portfolio × Amount Outs. 50-75 pctl 4.44∗∗ -4.85∗ -1.19

(2.14) (2.88) (3.18)

Portfolio × Amount Outs. 75-100 pctl 4.27 -0.36 -2.89

(3.26) (4.41) (3.90)

Day FE Yes Yes Yes

Issuer Industry FE Yes Yes Yes

Observations 3,890,730 2,384,982 6,230,081

Adjusted R2 0.141 0.049 0.095

Within R2 0.138 0.045 0.093

Note: This tables provides OLS estimates of the trade-level equation (5). Transaction cost is regressed on a portfolio trade

dummy, a portfolio dealer dummy, age, amount outstanding, time to maturity, credit rating, trade size, and the interaction

of the portfolio trade dummy with portfolio characteristics –number of bonds, volume HHI, credit rating average, standard

deviation compared to its i.i.d. counterfactual, amount outstanding average, aggregate volume–, day fixed effects and issuer

industry fixed effects. Equation (5) is estimated using full customer buy portfolios and sequential customer buy trades (column

1), full customer sell portfolios and sequential customer sell trades (column 2), and mixed portfolios and all sequential trades

(column 3). To ease the exposition, some estimates are left untabulated. Clustered day-bond standard-errors are shown in

parentheses. One, two, and three stars indicate statistical significance at the 0.1, 0.05, and 0.01, respectively.
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As can be seen in Table 9, the balance sheet and diversification channels are economically and statis-

tically significant. Portfolios that involve larger volumes pay higher transaction costs. Compared to those

bonds in portfolios below the 25th percentile of the aggregate volume distribution, bonds in portfolios above

the 75th percentile pay 36.34 bps, 9.11 bps, and 25.29 bps more transaction costs, according to the trade side

considered. Since almost all bonds traded through portfolios imply balance sheet costs, the larger those costs

the larger the transaction costs dealers translate to customers. Table 9 also shows that, for portfolios where

customers buy bonds, the transaction costs are reduced as we increase the number of bonds. In particular,

bonds in full customer-buy portfolios in the 4th quartile pay 27.67 bps less transaction costs than those in

the 1st quartile, with a similar pattern happening for mixed portfolios. The other variables considered to

address portfolio diversification present no clear evidence in favor or against the hypothesis.

I do not find strong evidence about asymmetric information driving portfolio transaction costs. The

estimated coefficients associated with the average amount outstanding of a portfolio go in opposite directions

according to buy and sell trades and are typically not significant. As the lack of significance may be due to

the variable considered not being an accurate proxy for asymmetric information, in Appendix A.8 I estimate

two alternative models that speak to this channel. First, I extend equation (2) by replacing the day fixed

effects for time-series variables. Among them, the Volatility Index produced by the Chicago Board Options

Exchange (VIX) measures the uncertainty related to stock price movements. If the asymmetric information

channel plays a role when pricing portfolios, it is expected that such a role gains importance in uncertain

times. I find no evidence regarding this claim. Second, I compute the evolution of bond prices after these

had been traded, at different horizons. If portfolios are traded on information, it is expected that the prices

of those portfolio bonds sold (bought) would decrease (increase) after the trade more than what they do

after sequential trades (Di Maggio, Franzoni, Kermani, and Sommavilla, 2019; Pinter, Wang, and Zou, 2024).

Again, I find no evidence supporting this hypothesis.

Overall, the evidence presented suggests that dealers price portfolios differently according to the

aggregated volume traded and the amount of risk they can diversify. Larger portfolios imply higher balance

sheet costs and thus are traded with a penalty. In turn, conditional on the aggregated volume traded,

portfolios with more bonds reduce their return volatility and thus are traded with a discount.

6 Conclusion

This paper empirically studies portfolio trading in the corporate bond market. This new protocol allows

customers to trade a bundle of bonds simultaneously, reducing the time it would take to trade these bonds

sequentially and the consequent execution uncertainty. In line with the novelty of the protocol, data sets do

not explicitly account for it. To overcome this issue, I develop an algorithm to infer portfolios from specific

characteristics of bundles of bonds. I find that portfolio trades represent a significant and growing fraction
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of the market and that its intermediation is concentrated among top dealers, who source bonds using their

balance sheets. Finally, I turn to the liquidity implications of portfolio trading. I do so by comparing the

transaction costs charged in this protocol and in the alternative one, i.e. traditional sequential trading. I

present novel evidence of asymmetrical transaction costs: compared to sequential trading, portfolio trading is

42.6% less expensive when customers buy and 9.9% more expensive when they sell. To address which factors

drive these results, I proceed in two steps. On the one hand, I show there is a significant cross-subsidy within

portfolios: bond characteristics that are priced in sequential trading are reversed when the bond is included

in a portfolio. On the other hand, I study several hypotheses of portfolio pricing. I find that dealers penalize

portfolios that involve large balance sheet costs and offer discounted transaction costs to those portfolios

that diversify risk. I find no evidence of asymmetric information driving portfolio pricing.
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A Appendix

A.1 Customer-dealer trades frequency

Here I show that bundles of 30 or more bonds being traded by the same dealer at the same second are rare,

a fact that supports my portfolio identification strategy. Table A.1 presents statistics for the top ten dealers

performing portfolio trades. Both taking into account the extensive margin, i.e. how often a customer-dealer

trade is observed, and the intensive margin, i.e. how many customer-dealer trades happen in every trading

second. It is observed that trading is rather infrequent, with bundles of 30 or more bonds only observed at

the extreme tail of the distribution.

Table A.1: Customer-dealer trades frequency, per portfolio dealer. Period 2018-2019

Vol % share Seconds between trades in an hour Number of trades in a second

Dealer Port. Seq. p50 p90 p99 p99.9 p50 p90 p99 p99.9

1 49.9 10.2 51 26 21 16 1 3 6 57

2 18.6 8.9 65 34 26 19 1 2 4 38

3 17.4 0.7 157 45 33 20 1 3 10 147

4 6.5 8.1 86 45 36 24 1 2 4 15

5 3.3 8.5 97 51 38 21 1 2 4 10

6 2.5 7.5 90 40 31 20 1 3 6 10

7 0.7 8.2 103 53 40 19 1 2 4 10

8 0.2 5.3 138 73 56 43 1 1 2 5

9 0.2 0.0 1,800 240 93 67 1 9 11 69

10 0.2 0.3 720 95 59 48 1 6 14 28

Note: This table shows statistics for the top ten portfolio trading dealers. Columns 2 and 3 show the market share

of each dealer, for portfolio and sequential trading, respectively. Columns 4-7 measures how often a customer-dealer

trade is observed. To compute this variable, I initially calculate how many customer-dealer trades a dealer executes

in every hour in which she executes a trade (avoiding thus the hours in which there is no market). Then I divide

3600 by such a figure to re-express the variable as the number of average seconds between trades in each hour. For

example, if in an hour there are 10 trades, that means that a trade happens on average every 3600/10=360 seconds

during that hour. Columns 8-11 measure how many customer-dealer trades happen in every trading second.

A.2 Portfolio Trades Market Share

Here I present the monthly time series of portfolio trading shares considering both volume and the amount

of trades, and for alternative market segments.
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Figure A.1: Portfolio trading trades - All segments
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Note: This figure depicts the monthly time-series of trades performed through portfolio trading,

including both customer-dealer and inter-dealer trades. The bars –left axis– indicate the number of

trades, expressed in thousands. The line –right axis– indicates market share, expressed in percentage

points.

Figure A.2: Portfolio trading volume - Customer dealer segment
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Note: This figure depicts the monthly time-series of portfolio trading volume, including only customer-

dealer trades. The bars –left axis– indicate total face value, expressed in billion dollars. The line –right

axis– indicates market share, expressed in percentage points.
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Figure A.3: Portfolio trading trades - Customer dealer segment
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Note: This figure depicts the monthly time-series of trades performed through portfolio trading,

including only customer-dealer trades. The bars –left axis– indicate the number of trades, expressed

in thousands. The line –right axis– indicates market share, expressed in percentage points.

Figure A.4: Portfolio trading volume - Inter-dealer segment
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Note: This figure depicts the monthly time-series of portfolio trading volume, including only inter-

dealer trades. The bars –left axis– indicate total face value, expressed in billion dollars. The line

–right axis– indicates market share, expressed in percentage points.
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Figure A.5: Portfolio trading trades - Inter-dealer segment
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Note: This figure depicts the monthly time-series of trades performed through portfolio trading,

including only inter-dealer trades. The bars –left axis– indicate the number of trades, expressed in

thousands. The line –right axis– indicates market share, expressed in percentage points.

A.3 Dealers’ Market Share Evolution of Portfolio Trading

Here I present the evolution of the market share of each one of the top ten portfolio trading dealers, consid-

ering both volume traded and number of bonds traded.
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Figure A.6: Portfolio Trading Market Share Evolution - Volume
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Note: This figure depicts dealers’ monthly share of the portfolio trading (face value) volume. Dealers

are ordered according to their volume share in the entire period 2018-2019.

Figure A.7: Portfolio Trading Market Share Evolution - Trades
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Note: This figure depicts dealers’ monthly share of the portfolio trading trades. Dealers are ordered

according to their volume share in the entire period 2018-2019.
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A.4 Bonds Sourcing using Number of Trades

Table A.2 shows how the top ten portfolio dealers source their portfolio and sequential trades: offsetting

with other dealers or customers, or involving their own inventories. The figures express percentage points

computed out of the number of trades.

Table A.2: Sourcing of Portfolio - Number of Trades

Market Share Portfolio Sourcing Sequential Sourcing

Offset ≤15m Non-Offset Offset ≤15m Non-Offset

Dealer Portfolio Sequential C D C D

1 35.3 6.7 2.6 0.4 97.0 4.0 7.6 88.3

2 21.2 4.3 2.0 1.0 97.0 5.5 2.2 92.3

3 31.0 1.7 0.0 1.1 98.9 0.0 1.1 98.9

4 3.2 3.1 2.4 1.2 96.4 6.0 17.2 76.8

5 2.3 2.9 14.1 0.1 85.8 9.4 1.2 89.5

6 3.3 4.0 0.6 0.4 99.1 4.5 1.3 94.2

7 1.5 2.7 0.2 0.2 99.6 8.7 1.6 89.7

8 0.3 1.8 0.2 0.5 99.3 10.0 5.4 84.6

9 0.3 0.1 0.0 98.5 1.5 0.2 72.5 27.3

10 0.2 0.3 0.0 100.0 0.0 0.0 100.0 0.0

Note: This tables shows, for each of the top ten portfolio trading dealers, its portfolio trading market share

(column 2), its sequential trading market share (column 3), the distribution in the three categories – Offset

≤ 15 - C, Offset ≤ 15 - D, Non-Offset – of its portfolio trading activity (columns 4-6) and sequential trading

activity (columns 7-9). All statistics are computed using the non-weighted number of trades.

A.5 Variables Computation

This subsection describes the computation of the variables used in trade-level and portfolio-level analysis.

Trade-level variables:

• Portfolio dealer: Dummy variable that equals 1 if the trade was performed by a dealer that accumulates

more than 0.01% of the total portfolio trading volume.

• Age: Number of years between the day of offering and the trading day.

• Amount Outstanding: Total amount outstanding of the bond being traded, measured in face value and

expressed in billions of dollars.
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• Time to Maturity: Number of years between the day of maturity and the trading day.

• Trade Size: Par-value of the transaction, expressed in millions of dollars.

• Credit Rating: I initially compute the average letter ratings of the three agencies present in FISD (S&P,

Moodie’s, and Fitch) by using standard letter-number equivalences (e.g., AAA=1, D=25). I then go back

to letter ratings using the same equivalence and classify bonds as Investment Grade Superior, Investment

Grade Inferior, High Yield Superior, or High Yield Inferior if they belong to credit rating brackets AAA-

AA, A-BBB, BB-B, or CCC-D, respectively.

• Turnover: I compute the turnover of a bond over the last 3 months previous to the month in which it is

traded. For each bond, past turnover equals
∑s=3
s=1 volt−s/(

∑s=3
s=1 iaot−s)/3), where t is the month in which

the trade happens, volt−s is the total face value traded in month t − s, and iaot−s is the mean amount

outstanding during month t− s.

• Idiosyncratic variance share: I firstly compute bond i weekly returns Ri,w using volume-weighted average

prices, including accrued interest rates and coupon payments. Second, I compute the OLS residuals of

the regression Ri,w − Rfw = α + β(Rmw − Rfw) + εi,w, where Rfw is the weekly interpolated 1M Treasury

rate and Rm is the weekly return of the Bank of America Merrill Lynch US Corporate Index (IG or

HY according to the bond considered). Finally, I compute the idiosyncratic variance share as the ratio

V ar(ε̂i,w)/V ar(Ri,w−Rfw). This variable is only computed for those bonds with at least 30 weekly returns.

Portfolio-level variables:

• Number of bonds: Sum of bonds in a portfolio

• Herfindahl-Hirschman Index (HHI):
∑
i∈p(voli/

∑
i∈p voli)

2, where voli denotes the Trade Size of trade i

in portfolio p.

• Average Rating: Simple average of the Credit Rating of the bonds in a portfolio, where the Credit

Rating character variable is turned to numeric by using standard letter-number equivalences (e.g., AAA=1,

D=25).

• Portfolio Standard Deviation compared to its iid counterfactual (SD/SDiid): I initially compute the port-

folio return standard deviation SD. For this, I take bond returns Ri,w as previously described and impute

weights Wi using the net volume (face value) of bonds in the portfolio. Secondly, I compute the counterfac-

tual iid portfolio return standard deviation SDiid = [
∑
i w

2
i V ar(Ri)]

1/2. Finally, I compute the percentage

deviation and express it in percentage points 100(SD/SDiid − 1). This variable is only computed using

those bonds that, in the previous 30 weeks before the portfolio was traded, have at least 15 weekly returns

computed.
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• Amount Outstanding: Simple average of the Amount Outstanding of the bonds in a portfolio.

• Volume: Sum of Trade Size of the bonds in a portfolio.

A.6 Subsample of Customer-Dealer Trades with Reference Price Available

To construct the transaction cost measure for customer-dealer trades, there should exist at least one same

bond-day inter-dealer trade from which to take the reference price. In this Appendix, I present how this

requirement reduces the portfolio and sequential trading subsamples.

Table A.3 shows how the overall number of observations and volume implied is reduced when we only

consider those customer-dealer trades with an associated reference price. The reduction is higher in the

portfolio trade subsample.

Table A.3: Trades with associated reference price

Sample Observations (%) Volume (%)

Portfolio 60.03 62.86

Sequential 83.10 69.88

The reduction in the samples that are used for the transaction costs analysis can represent a concern

if the lack of reference price correlates with trade characteristics. In such a case, our estimations may suffer

from a selection bias. Tables A.4 and A.5 decompose portfolio and sequential samples into those trades with

and without an associated reference price, and present the distribution of relevant characteristics in the two

partitions. Although there are clear differences between the partitions with and without a reference price,

we still have enough variation in each characteristic so that we can control for them in the estimations, thus

lessening the selection bias concern.
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Table A.4: Variables distribution differences within portfolio trades

Variables Ref Price Mean Std. dev. .05 .25 .50 .75 .95

Age (years) No 3.27 3.11 0.35 1.15 2.38 4.41 9.09

Yes 3.23 2.75 0.36 1.32 2.63 4.41 7.63

Amount Outstanding $B No 0.80 0.57 0.30 0.50 0.64 1.00 1.80

Yes 1.25 1.00 0.40 0.62 1.00 1.50 3.00

Customer Sell No 0.43 0.50 0.00 0.00 0.00 1.00 1.00

Yes 0.41 0.49 0.00 0.00 0.00 1.00 1.00

Maturity (years) No 11.18 9.53 2.48 4.76 6.99 17.95 28.93

Yes 8.81 7.77 2.18 4.30 6.33 8.63 27.85

Rating 1-25 No 10.81 3.78 5.00 8.00 11.00 14.00 17.00

Yes 10.79 3.73 5.00 8.00 11.00 13.00 16.00

Trade Size $M No 0.61 1.77 0.02 0.10 0.20 0.50 2.19

Yes 0.69 2.00 0.02 0.10 0.25 0.50 2.50

Turnover 3m No 21.42 42.02 2.85 9.47 17.27 27.51 52.91

Yes 27.58 38.40 6.32 13.83 22.16 34.23 66.82

Table A.5: Variables distribution differences within sequential trades

Variables Ref Price Mean Std. dev. .05 .25 .50 .75 .95

Age (years) No 3.40 3.18 0.33 1.13 2.51 4.70 9.00

Yes 4.01 3.34 0.47 1.79 3.31 5.38 8.82

Amount Outstanding $B No 0.81 0.64 0.28 0.45 0.60 1.00 2.00

Yes 1.27 1.21 0.28 0.50 1.00 1.50 3.10

Customer Sell No 0.50 0.50 0.00 0.00 1.00 1.00 1.00

Yes 0.38 0.49 0.00 0.00 0.00 1.00 1.00

Maturity (years) No 11.29 10.04 1.85 4.30 6.93 18.98 29.24

Yes 7.39 7.40 1.40 3.05 5.15 7.86 26.30

Rating 1-25 No 9.69 3.77 5.00 7.00 9.00 12.00 17.00

Yes 9.09 3.64 4.00 7.00 9.00 11.00 16.00

Trade Size $M No 1.39 3.08 0.01 0.07 0.30 1.42 5.91

Yes 0.66 2.32 0.01 0.02 0.05 0.25 3.50

Turnover 3m No 19.70 24.07 2.37 7.78 14.57 25.11 53.79

Yes 23.15 23.84 4.06 10.19 16.60 27.93 64.97
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A.7 Transaction Costs Drivers Within Portfolios

In this Appendix I provide evidence on individual reported prices of portfolio trading bonds being econom-

ically significant. I do so by showing that the pricing of bond characteristics within portfolios follows the

same patterns as in sequential trading. Using only the portfolio trading observations, I estimate the following

equation:

TCi,p = α+ ΓCi + δFEp + ΛFE + εi,p,

where I include portfolio fixed effects to capture how characteristics included in vector C are priced within

each portfolio. Table A.6 shows the same pricing pattern as in sequential trading: smaller issues, with higher

time to maturity and worse credit risk are more expensive to trade. These results hold under an alternative

specification in which, instead of using portfolio fixed effects, I re-compute variables as quartile bins for each

portfolio.
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Table A.6: Transaction costs regression on trade characteristics within portfolios.

Dependent Variable: Transaction Cost

(1)

Age 0.15∗

(0.08)

Amount Outstanding -0.65∗∗∗

(0.17)

Time-to-maturity 3-5 0.54

(0.54)

Time-to-maturity 5-10 1.18∗

(0.63)

Time-to-maturity >10 5.77∗∗∗

(1.48)

Odd (100K-1M) 0.23

(0.49)

Round (1M-5M) 0.63

(0.81)

5M and above 3.87∗∗

(1.71)

IG (A-BBB) -0.16

(0.56)

HY (BB-B) 2.21∗∗

(1.12)

HY (CCC-D) 7.01∗∗∗

(1.83)

Idiosync. var. share 1.41

(1.17)

Customer Sell 3.79∗∗

(1.90)

Day FE Yes

Portfolio FE Yes

Issuer Industry FE Yes

Observations 89,104

Adjusted R2 0.134

Within R2 0.003

Note: This tables provides OLS estimates of the trade-level regression of transaction cost on age, amount outstanding, time

to maturity, credit rating, trade size, idiosyncratic variance share, day fixed effects , portfolio fixed effects and issuer industry

fixed effects. The sample consists of portfolio trades. Clustered day-bond standard-errors are shown in parentheses. One, two,

and three stars indicate statistical significance at the 0.1, 0.05, and 0.01, respectively.
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A.8 Asymmetric Information Channel Robustness Checks

In this Appendix, I provide two alternative model specifications searching for evidence of an asymmetric

information channel in portfolio transaction costs. The first model provided is an extension of equation (2)

in which I replace day fixed effects for time-series variables. This model allows me to include the Volatility

Index (VIX), which is a time-series measure of market uncertainty. If the asymmetric information channel

plays a role when pricing portfolios, it is expected that such a role gains importance in uncertain times.

TCi,t = α+ β11i=Portfolio + γCi + β2VIXt + β31i=PortfolioVIXt + β4T2Y-T1M + β5TED Spread + ΛFE + εi,t

In Table A.7, I estimate the model for customer buy and customer sell bonds separately. To control

for the time varying financial costs of dealers, I include the difference between the 2 years and 1 month

Treasury rates (T2Y-T1M) and the difference between the 3 months LIBOR rate and 3 month Treasury rate

(TED Spread). In columns 1 and 2 I estimate the model using bond fixed effects, while in columns 3 and 4

I use the vector C of bond characteristics plus dealer and industry fixed effects. The portfolio transaction

costs differential with sequential trading does not change significantly in times of high expected volatility.

This non-significance result holds if I control for VIX non-linearities by using quartile dummies.

Table A.7: Transaction Costs regression on time series macro variables.

Dependent Variable: Transaction Cost
Customer buys Customer sells Customer buys Customer sells

T2Y-T1M 5.82∗∗∗ -2.91∗∗∗ -0.51 -2.02∗∗∗

(0.61) (0.60) (0.53) (0.54)
TED Spread 2.47 7.74∗∗∗ 3.25∗∗ 8.90∗∗∗

(1.79) (1.74) (1.47) (2.24)
VIX 0.51∗∗∗ 0.14∗ 0.32∗∗∗ 0.15

(0.05) (0.08) (0.03) (0.11)
Portfolio × VIX -0.32 0.38 -0.12 0.30

(0.21) (0.30) (0.21) (0.30)

Bond FE Yes Yes No No
Dealer FE No No Yes Yes
Issuer Industry FE No No Yes Yes

Observations 3,851,178 2,370,309 3,847,660 2,366,885
Adjusted R2 0.197 0.082 0.283 0.109
Within R2 0.036 0.006 0.057 0.012

Note: This tables provides OLS estimates of the trade-level regression of transaction cost on a portfolio trade
dummy, trade size, VIX, 2 year Treasury rate minus 1 month Treasury rate, TED Spread, and bonds fixed effects,
for customer buy trades (column 1) and customer sell trades (column 2) separately. Alternatively, columns 3 and
4 replace bond fixed effects for age, amount outstanding, time to maturity, credit rating, dealer fixed effects and
issuer industry fixed effects, for customer buy and customer sell trades, respectively. To ease the exposition, some
estimates are left untabulated. Clustered day-bond standard-errors are shown in parentheses. One, two, and three
stars indicate statistical significance at the 0.1, 0.05, and 0.01, respectively.

For the second model, I compute the (ex-post) performance of bonds, at different horizons h (Di Mag-

41



gio, Franzoni, Kermani, and Sommavilla, 2019; Pinter, Wang, and Zou, 2024):

Performanceb,t,h = [ln(Pb,t+h)− ln(Pb,t)] ∗Q,

where Q is a trade side indicator that equals 1 (-1) if the customer buys (sells) and Pb,t is the simple average

price of bond b at day t. In this way, each trade i will have attached a performance measure. Then I estimate

a model where the performance attached to each trade is a function of its inclusion in portfolio trading, trade

side, and relevant fixed effects.

Performancei,h = α+ β11i=Portfolio + β21i=Cust. sells + β31i=Portfolio1i=Cust. sells + ΛFE + εi,h

If portfolios are traded on information, it is expected that the prices of those portfolio bonds sold

(bought) would decrease (increase) after the trade more than what they do after sequential trades. Table

A.8 shows no evidence supporting this story. On the contrary, bonds sold through portfolios show a significant

worse performance (price increase) than those sold through sequential trading after 20 days of the trade.

Table A.8: Return Performance regression on portfolio trading.

Dependent Variables: Performance
h = 1 day h = 10 days h = 20 days

Portfolio -0.89 -1.16 5.23
(1.45) (5.64) (6.30)

Portfolio Dealer 6.23∗∗∗ 6.42∗∗∗ 5.93∗∗∗

(0.21) (0.65) (0.77)
Customer Sell -6.41∗∗∗ -10.43 -13.18

(1.76) (6.33) (8.27)
Portfolio × Customer Sell -3.22 -12.76 -32.87∗∗

(2.49) (9.00) (13.34)

Day FE Yes Yes Yes
Bond FE Yes Yes Yes

Observations 5,381,271 3,473,835 4,975,786
Adjusted R2 0.020 0.019 0.020
Within R2 0.002 0.001 0.001

Note: This tables provides OLS estimates of the trade-level regression of performance on a
portfolio trade dummy, customer sell dummy, the interaction between portfolio trade and
customer sell dummies, trade size, day fixed effects, and bonds fixed effects. Estimates
for the measured of performance at 1 day, 10 days, and 20 days horizon are presented
in columns 1, 2, and 3, respectively. To ease the exposition, some estimates are left
untabulated. Clustered day-bond standard-errors are shown in parentheses. One, two,
and three stars indicate statistical significance at the 0.1, 0.05, and 0.01, respectively.
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